

Cuando el análisis de aceite no basta: Nuevas ventanas de detección para anticipar fallas – Caso de estudio.

Gerardo Trujillo C.

Fundador del CMC **Andrés B. Lantos**

VP Dr. Lantos Lab

CONFIDENCIALIDAD

Este es un caso real.
Los datos específicos son
omitidos a solicitud expresa de
la compañía minera.

#CMCChile2025

3

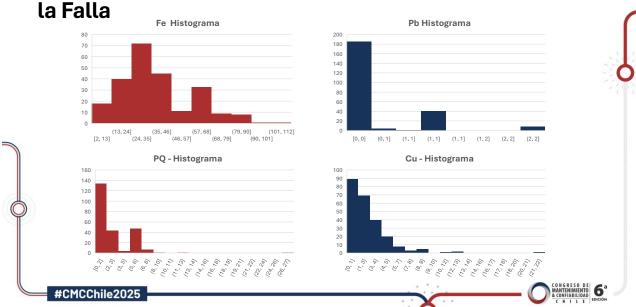
Haul Truck 797F - Motor C175 Caterpillar

Camión 797F

- Categoría Ultra-Clase
- · Operación minera a cielo abierto
- Costo USD 5'000,000

Motor C175

- 20 cilindros en V
- 106 litros de cilindrada
- · 4 turbocargadores
- Potencia 4,000 hp
- 3,785 litros de combustible
- · Refrigerado por mezcla anticongelante
- · Sistema de inyección Common Rail
- · Tiempo de operación estimado 20,000 h
- 1,135 litros de aceite
- Costo del motor USD \$1'127,000
- Costo de reparación: entre 30 y 70% del costo del motor nuevo


#CMCChile2025

J

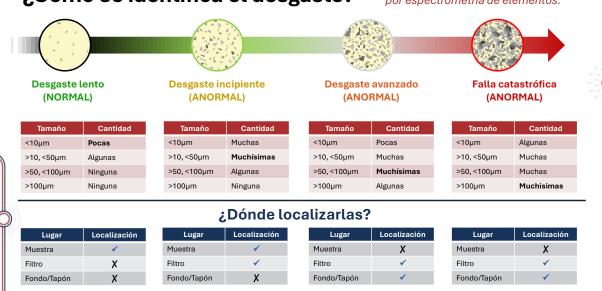
Resultados de Análisis de Lubricante ANTES de

Espectroscopía de Emisión Atómica (AES)

- · Elemento atómico
- Concentración en ppm
- Partículas < 8µm

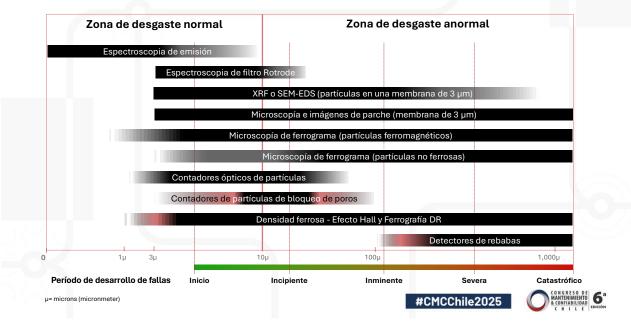
Cuantificador de partículas ferromagnéticas

- Partículas ferromagnéticas (Fe, Ni, Acero inoxidable)
- Concentración en ppm o Índice
- Partículas >1µm


Ferrografía Analítica

- Partículas ferromagnéticas (Ferrograma)
- Todas las partículas (filtrograma)
- Tamaño
- Color
- Forma
- Apariencia
- Magnetismo

¿Cómo se identifica el desgaste?


Las partículas >10µm **NO** serán detectadas por espectrometría de elementos.

8

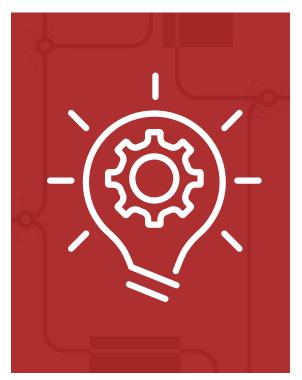
#CMCChile2025

Sensibilidad de las Tecnologías al Tamaño de las Partículas

9

Centrifugal Oil Filter - COF

- Función: Eliminar partículas ultrafinas
 <5µm
- La fuerza centrífuga separa partículas metálicas, hollín y contaminantes pesados (entre 6,000 y 8,000 rpm)
- Los contaminantes se adhieren a las paredes del filtro formando una torta de pasta negra
- Sin caída de presión ni consumibles
- Limpieza del Aceite ISO 17/15/12 o mejor
- Periodos de drenado de 500 h o más
- Limpieza periódica (500 1,000 h)



11

Solución Recomendada

Desarrollar una prueba en laboratorio interno para analizar el material retenido por el filtro que permita identificar condiciones anormales con anticipación.

Diseño de la Solución

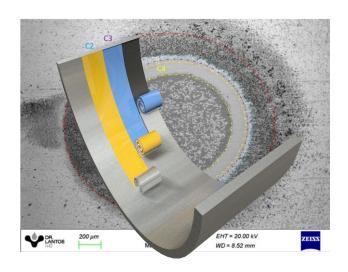
13

Laboratorio de Investigación y Desarrollo

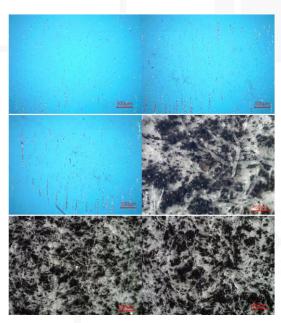
- Scanning Electron Microscopy SEM
- X-Ray Dispersive Spectroscopy EDS

Equipos de alta tecnología y expertos en investigación y desarrollo

- Análisis de aceite (mismas pruebas)
- Análisis de gota (Método Lantos)
- Análisis de metales de cojinetes
- Análisis de torta COF por filtrograma y análisis microscópico



Investigación Previa – Laboratorio LANTOS						
Capa	Espesor (µm)	Principales elementos				
Superficie	-	Plomo, Indio				
C1	17	Plomo, Aluminio				
C2	4	Plomo				
С3	2	Estaño, Cobre, Niquel				
C4	4	Estaño, Indio, Niquel				
Sustrato	-	Cobre				



Análisis de "torta" de COF

Análisis espectrométrico (desgaste)

Cobre - Cu	ASTM D5185	mg/kg (ppm)	3
Hierro - Fe	ASTM D5185	mg/kg (ppm)	37
Cromo - Cr	ASTM D5185	mg/kg (ppm)	< 1
Níquel - Ni	ASTM D5185	mg/kg (ppm)	< 1
Manganeso - Mn	ASTM D5185	mg/kg (ppm)	< 1
Estaño - Sn	ASTM D5185	mg/kg (ppm)	< 1
Plomo - Pb	ASTM D5185	mg/kg (ppm)	< 1
Plata - Ag	ASTM D5185	mg/kg (ppm)	2
Aluminio - Al	ASTM D5185	mg/kg (ppm)	7

- Bajo microscopio óptico se analizan las partículas de desgaste halladas en los residuos carbonosos.
- 2. En el análisis de ferrografía analítica e encuentran apreciable cantidad de partículas metálicas ferrosas agrupadas en bandas alineadas según el campo magnético aplicado. Estas partículas mayormente poseen tamaños inferiores a los 20 micrones.
- 3. Mediante filtrografía se encuentran tambiér partículas ferrosas tipo laminares de hasta 40 micrones, y partículas tipo plaquetas de hasta 100 micrones pertenecientes a metal blanco (es decir material de cojinetes), asociadas a un desgaste por fatiga del material.

17

Combustión, Hollín, Dispersancia, Refrigerante y Combustible

Hallazgos en LANTOS I+D

- Modo de desgaste por fatiga
- Desgaste incipiente
- El desgaste adhesivo y abrasivo son modos de desgaste predominantes
- El desgaste no relacionado por eventos puntuales, como la falta de aceite o la sobrecarga.
- El tamaño de las partículas se encuentra principalmente en el rango medio a bajo (<60 μm)
- Aleaciones de desgaste detectadas
 - Pb-Sn-In: **cojinetes** principales y de biela
 - · Acero al carbono: ejes, bielas
 - Acero con bajo Cr (AISI 52100): árbol de levas, engranajes

Se confirma que las partículas grandes están en el filtro y que pueden ser

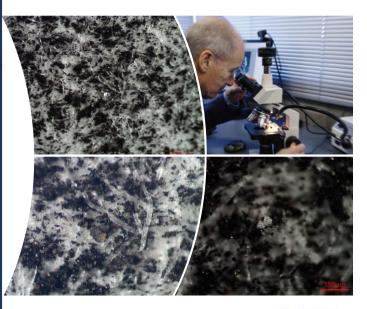
analizadas por microscopio

#CMCChile2025

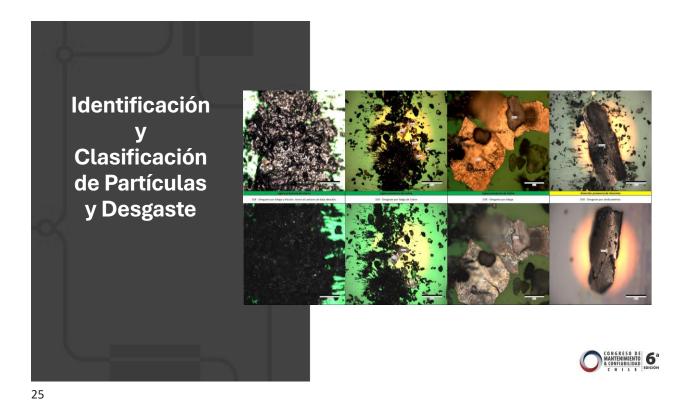
CONGRESO DE MANTENIMIENTO & CONFIABILIDAD EDICIÓN

Análisis del Filtro Centrífugo - MUESTREO

Preparación de Filtrograma y Ferrograma



#CMCChile2025


CONGRESO DE MANTENIMIENTO & CONFIABILIDAD

23

#CMCChile2025

Criterios de Alerta y Acciones Recomendadas

MF	Alerta	Acción	Crítico	Acción
Combustión incorrecta	Espesor de torta >25mm, <35mm	Revisar filtros admisión, consumo de combustible, operación y carga. Muestra LAB, Programar inspección en taller.	Espesor de Torta >35mm	Revisar filtros admisión, consumo de combustible, operación y carga. Muestra LAB, Inspección en taller Urgente
Contaminación con partículas	Partículas abrasivas (algunas) y partículas de corte > 25µm, <50µm	Revisar filtro admisión, tapones y mangueras. Programar inspección al taller.	Partículas abrasivas (muchas) y partículas de corte > 50µm	Revisar filtro admisión, tapones y mangueras. URGENTE inspección al taller.
Desgaste Anormal Pistones / Ejes	Partículas ferrosas de desgaste de fatiga o adhesivo >40µm <100µm	Revisar temperaturas de operación, carga, presión aceite. Programar inspección en taller	Partículas ferrosas de desgaste de fatiga o adhesivo >100µm	Revisar temperaturas de operación carga, presión aceite. Inspección en taller URGENTE.
Desgaste Anormal Cojinetes	Partículas no ferrosas de desgaste de fatiga o adhesivo >40µm <100µm	Revisar temperaturas de operación, carga, presión, temperatura y nivel de aceite. Programar inspección en taller	Partículas no ferrosas de desgaste de fatiga o adhesivo >100µm	Revisar temperaturas de operación carga, presión, temperatura y nivel de aceite. Programar inspección er taller URGENTE.

27

Lecciones Aprendidas

