

¿Cómo lograr un mantenimiento predictivo?

#CMCMéxico2025

CONGRESO DE MANTENIMIENTO & CONFIABILIDAD MÉXICO

3

¿Cómo lograr un mantenimiento predictivo?

Consideraciones clave:

- Tipo de maquinaria
- Criticidad
- Accesibilidad
- Frecuencia de fallas
- Presupuesto y recursos humanos

#CMCMéxico2025

MASTERS OF MACHINE HEALTH

Definir objetivos, que quiero ver?

1. Objetivo del monitoreo:

- 📊 Detectar cambios por machine learning / Tendencias para mantenimiento predictivo
- Alarmas en tiempo real para protección
- Diagnósticos automáticos o análisis por especialistas
- III Acceso remoto desde celular o PC

2. Tipo de información a recolectar:

- O Vibración: ¿Quiero conocer niveles RMS, FFT, envolvente, fase?
- **\sigma** Temperatura: ¿Ambiente, rodamiento, sin contacto?
- **Corriente:** ¿Estoy evaluando carga o condiciones de motor?
- S RPM: ¿Quiero correlacionar datos con velocidad?
- Desplazamiento u órbitas: ¿Maquinaria con ejes o rotores críticos?

#CMCMéxico2025

5

¿Rutas / Monitoreo Permanente / Continuo?

Criterio	Rutas de Inspección	Monitoreo Permanente	Monitoreo Continuo
Instalación	Ninguna	Básico	Compleja
Frecuencia de medición	Manual	Horas / Minutos	Tiempo real
Alertas	Ninguna	Si cada medicion	En Tiempo real
Detección de fallas súbitas	Media / baja (pueden ocurrir entre mediciones) 70%	Alta 90%	Muy Alta (puede detectar cambios en tiempo real) 95%
Interacción humana	Requiere que alguien esté físicamente presente	Baja	Muy baja
Costo inicial	Bajo	Medio	Medio - Alto
Costo a largo plazo	Alto	Bajo	Bajo (por predicción de fallas)
Capacidad de análisis	Muy Buena pero limitada al momento de medición	Muy Buena y frecuente	Excelente e instantanea
Machine Learning	Limitado	Muy bueno	<u>Excelente</u>
Ideal para	Equipos no críticos	Equipos intermedios	Equipos críticos

#CMCMéxico2025

Comparativa de costos y ROI

(Ejemplo 200 sensores)

Concepto	Sistema por Rutas	Sensores Permanentes
Costo inicial del sistema	\$15,000.00	\$75,800.00
Mantenimiento anual	\$1,200.00	\$1,200.00
Horas hombre anuales	960	0
Costo por hora hombre	\$12.00	\$0.00
Costo mano de obra anual	\$11,520.00	\$0.00
Fallas esperadas por año	5	5
Tasa de predicción	70%	90%
Fallas no detectadas	1.5	0.5
Costo por falla no detectada	\$75,000.00	\$75,000.00
Costo anual por fallas no detectadas	\$112,500.00	\$37,500.00
Costo total anual (sin incluir inversión inicial)	\$125,220.00	\$38,700.00
Costo total primer año	\$140,220.00	\$114,500.00

AÑO 1

¬⟨¬⟩) ERBESSD INSTRUMENTS®

MASTERS OF MACHINE HEALTH

AHORRO

AHORRO

\$25,720 USD

#CMCMéxico2025

7

¿Que hay del Segundo año?

Concepto	Sistema por Rutas	Sensores Permanentes
Costo inicial del sistema	\$0.00	\$0.00
Mantenimiento anual	\$1,200.00	\$1,200.00
Horas hombre anuales	960	0
Costo por hora hombre	\$12.00	\$0.00
Costo mano de obra anual	\$11,520.00	\$0.00
Fallas esperadas por año	5	5
Tasa de predicción	70%	90%
Fallas no detectadas	1.5	0.5
Costo por falla no detectada	\$75,000.00	\$75,000.00
Costo anual por fallas no detectadas	\$112,500.00	\$37,500.00
Costo total anual (sin incluir inversión inicial)	\$125,220.00	\$38,700.00
Costo total segundo año	\$125,220.00	\$38,700.00

AÑO 2

\$86,520 USD

#CMCMéxico2025

③ Sensores de Alto Rango (hasta 10 kHz)

Ideales para detectar fallas en altas frecuencias, como rodamientos y resonancias.

Ejemplos de maquinaria:

- Turbinas
- ·Bombas centrífugas de alta velocidad
- •Motores eléctricos de media y alta velocidad (>=1800 RPM)
- •Reductores de velocidad
- Compresores
- Ventiladores industriales

Ventaja: Excelente respuesta en frecuencias altas y diagnósticos avanzados.

Sensores de Alta Sensibilidad (hasta 4 kHz, menor ruido de base)

Ideales para vibraciones de baja amplitud y baja velocidad, mayor precisión en niveles bajos.

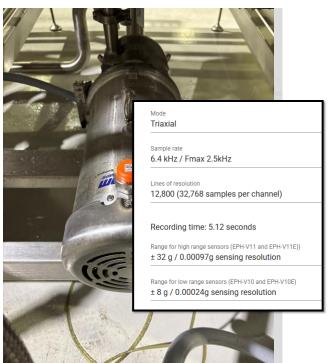
Ejemplos de maquinaria:

- Mezcladoras
- Extrusoras
- Agitadores lentos
- •Molinos de bolas o rodillos

➤ **Ventaja**: Alta sensibilidad, perfecto para detectar fallas incipientes con mínima vibración.

#CMCMéxico2025

Colocación del sensor


¿Dónde?

- · Sobre el motor
 - Lado acoplado
 - Lado libre
- · Carcasa de rodamientos (Chumacera)
- Reductores o cajas de engranes

¿Cómo?

- · Superficie limpia y firme
- La orientación es clave
 - Un sensor mal orientado puede dejarte ciego de fallas críticas
- · Usa un adhesivo industrial
 - · Las bases magnéticas pueden generar holguras
 - Loctite Plastiacero

Configura correctamente tu sensor

Parámetros críticos:


- Frecuencia de muestreo (Sampling Rate)
- Duración de la medición (Time window)
- · Intervalo entre mediciones (Periodicidad)
- Rango dinámico (Amplitud máxima)

Alarmas y notificaciones

Machine Learning

11

Organiza tu monitoreo

Organiza tu sistema con una base de datos estructurada

Una planta sin estructura de monitoreo se convierte en un caos de datos que nadie analiza.

Estructura sugerida: Empresa – Area – Máquina - Punto de medición - eje

Configura tu semáforo de severidad o permite que Machine Learning lo configure por tí

Configurar alarmas de severidad permite detectar fallas a tiempo. Un vistazo es más que suficiente para saber que algo está mal.

		C		
SO 10816	ISO 20816-3	ISO 10816-7	ISO 10816-6	
rbinas Eólicas Gas Vapor	Máquinas rotatorias en ambiente industrial	Vibraciones en máquinas, vehículos y estructuras	Máquinas superiores a 100 kW	

MASTERS OF MACHINE HEALTH

Otras consideraciones

Machine Learning

Análisis de modos de vibración
Detección de cambios de patrón
Sistemas de autodiagnósitco

#CMCMéxico2025

Preguntas sugeridas:

¿Qué pasa si no tengo un analista o experto en vibraciones? ¿Es fácil analizar los datos?

¿El sistema permite administración de TI?¿Qué pasa si no puedo añadirlo a mi red?

¿En cuanto tiempo veo resultados?

¿Para qué tipo de máquinas es aplicable? ¿Vale la pena para auxiliares? ¿Es suficiente para máquinas críticas?

#CMCMéxico2025

