

Л

Toma de Decision en Activos Industriales

Aspecto	Enfoque Determinístico	Enfoque Probabilístico
Naturaleza del		
Problema	Fijo, predecible	Aleatorio, incierto
		Inciertas,
Entradas	Precisas, conocidas	probabilísticas
Salidas	Única, exacta	Rango, distribución
Complejidad del		
Modelo	Más simple	Más complejo

#CMCMéxico2025

5

Toma de Decision en Activos Industriales

	Enfoque	Enfoque	
Aspecto	Determinístico	Probabilístico	
	Baja (sensible a		
Robustez ante la	errores en las	Alta (considera la	
Incertidumbre	entradas)	variabilidad)	
		Basada en riesgo,	
Toma de Decisiones	Resultados binarios	probabilística	
	Sistemas		
	controlados, bien	Sistemas complejos,	
Aplicaciones	definidos	inciertos	

#CMCMéxico2025

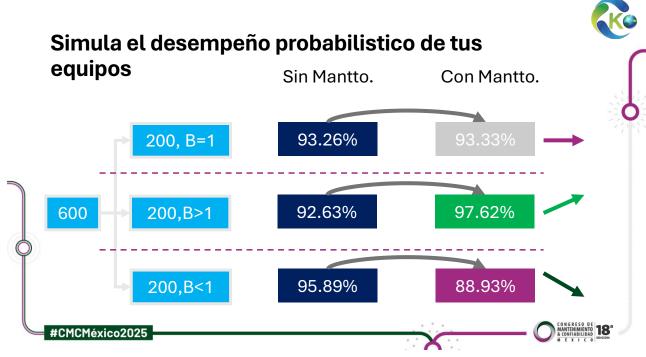
/

¿Cuándo es costo-efectivo + seguro realizar la próxima parada de planta?

- Consumo de combustible variable.
- Calidad de carga, variable
- Condición de Equipos, variable (temperatura- Arrhenius).
- Condición de Ejecución de Mantenimiento, variable.
- Vida acumulada, variable.

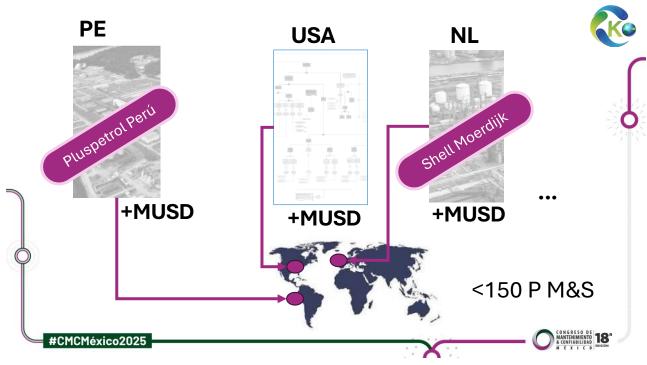
#CMCMéxico2025

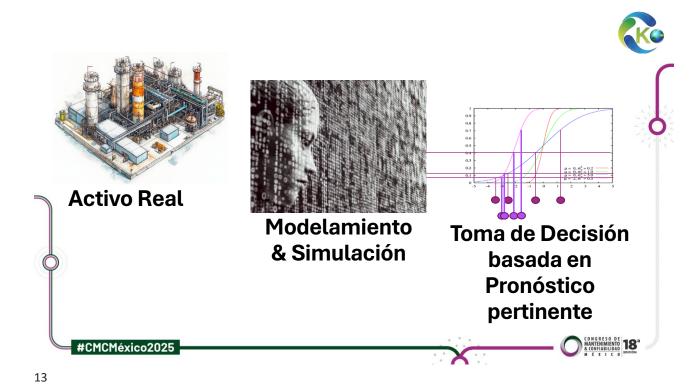
¿Cómo sincronizar el mantenimiento del equipo mayor con la dinámica del consumo de gas?



- Consumo de gas, estacional y función del clima de la ciudad.
- Utilización del Sistema de Compresión, función de la condición variable del yacimiento.
- Condición de Equipos, combinación: nuevo + envejecido.
- Clima en planta, afecta procesos criogénicos de separación.

#CMCMéxico2025


9



Probabilístico

#CMCMéxico2025

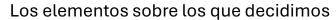
15

Toma de Decision en Activos Industriales

Los elementos sobre los que decidimos

- ... están aislados.
- ... no cambian en el tiempo
- ... no los afectan las perturbaciones externas
- ... se simplifican por sus promedios

Nuestros métodos analíticos.


- ... son simples listados de pasos.
- ... suma, resta, multiplicación y división

#CMCMéxico2025

Toma de Decision en Activos Industriales

- ... están aislados interconectados
- ... no cambian cambian en el tiempo
- ... no si los afectan las perturbaciones externas
- ... se simplifican se describen de manera completa

- ... son simples listados modelamiento y simulación
- ... suma, ... Los recursos matemáticos más aptos que existan

Probabilístico

#CMCMéxico2025

Situaciones inherentemente probabilísticas en nuestro contexto industrial

18

1. Programación del Mantenimiento Predictivo

- Los fallos de los equipos inherentemente inciertos
- Factores: Desgaste, patrones de uso, condiciones ambientales y defectos de fabricación.

- Momento <u>óptimo</u> para realizar mantenimientos basándose en la probabilidad de fallo
- Usa modelos de confiabilidad (p. ej., análisis de Weibull o cadenas de Markov).

19

2. Gestión de Inventario de Repuestos

Demanda de repuestos fluctúa ->

- fallos aleatorios de los equipos
- variaciones en los programas de producción.

Nivel <u>óptimo</u> de inventario

- Distribución de Poisson
- Simulaciones de Monte Carlo
- Riesgos de desabastecimiento y exceso de stock.

MANTENIMIENTO & CONFIABILIDAD M É X I C O

3. Planificación de Inspecciones Basadas en Riesgo (RBI)

Degradación de los activos (corrosión, fatiga):

- Es estocástica
- F() condiciones operativas inciertas.

Priorizar inspecciones para activos de alto riesgo utilizando evaluaciones de riesgo probabilísticas (PRA) que cuantifiquen la probabilidad y consecuencias de fallos.

21

4. Optimización del Consumo Energético

Demanda / Suministro de energía están sujetos a:

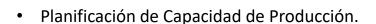
- Cargas de producción fluctuantes ->P,
- Condiciones climáticas -> P, y
- Disponibilidad de la red -P.

Optimizar el uso de energía utilizando modelos probabilísticos para predecir picos de demanda e integrar fuentes renovables con salidas variables.

#CMCMéxico2025

5. Decisiones de Inversión de Capital

- Retornos futuros de inversiones en nuevas tecnologías o infraestructura son inciertos
- Condiciones del mercado ->P,
- Rendimiento operativo -> P.



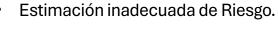
Usar <u>modelos financieros probabilísticos</u> (p. ej., simulaciones de Monte Carlo) para evaluar el valor presente neto (VPN) y la tasa interna de retorno (TIR) bajo varios escenarios.

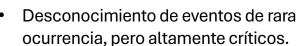
23

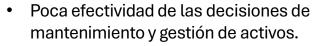
Otros ejemplos

- Extensión de Vida vs. Reposición de Equipos.
- Evaluación de Seguridad.
- Cumplimiento Ambiental y Gestión de Emisiones.
- Exploración de capacidad de cadena de suministro.
-

#CMCMéxico2025







Riesgos asociados a la sobre-simplificación

- Muy baja capacidad de acierto en decisiones estratégicas.
- Desgaste organizacional.
- Sobrecostos y frustración

26

#CMCMéxico2025

Barreras para la adopción del pensamiento probabilístico

Resistencia Cultural.

Falta de "Juego" a nivel internacional.

Recursos de Educación No Disponible.

Complejidad percibida y barreras cognitivas

Cortoplacismo.

"Normitis" o uso mal entendido de las normas.

#CMCMéxico2025

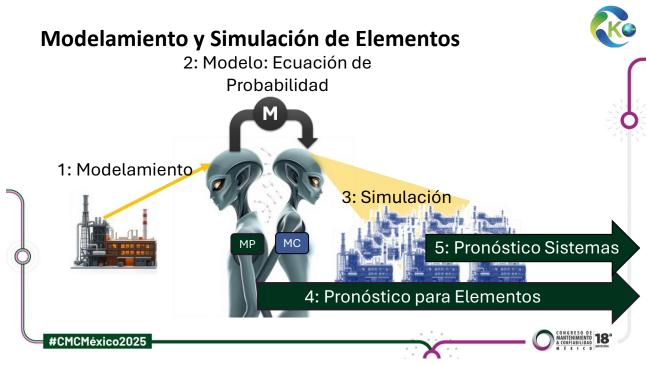
Modelos de Probabilidad

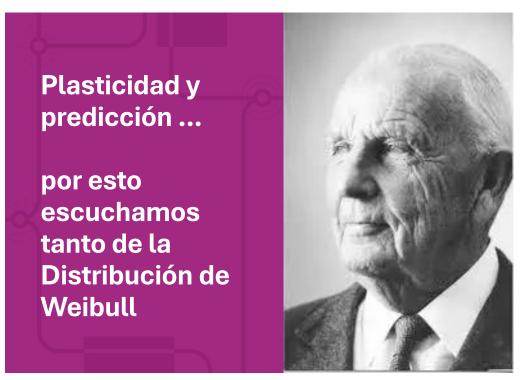
- Representan una Variable de Interés
- Se adaptan a los datos disponibles: ¡Aprenden!
- Generan nuevos datos a partir de su estructura: iGenerativos!
- La incertidumbre es inherente; no fallan, sino que abrazan la aleatoriedad.
- Evolucionan cuando reciben más datos: iMutantes!

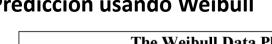
#CMCMéxico2025

29

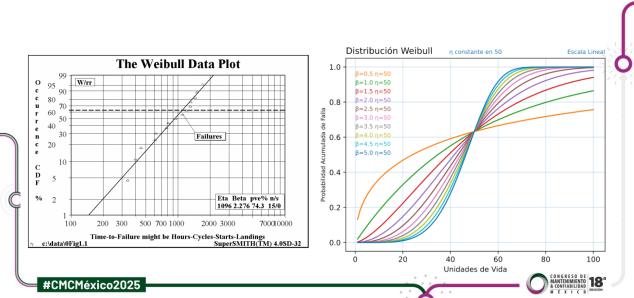
Simulación de Monte Carlo


- •Usa modelos probabilísticos como fundamento.
- •Genera "clones" que replican el comportamiento real.
- •Base de Exploración escenarios posibles de manera sistemática.
- •Permite cuantifica riesgos y oportunidades con precisión.
- •Su poder predictivo está comprobado en innumerables aplicaciones.

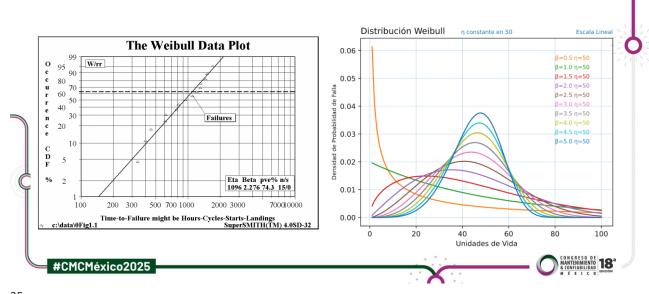

#CMCMéxico2025



Modelamiento y Predicción usando Weibull

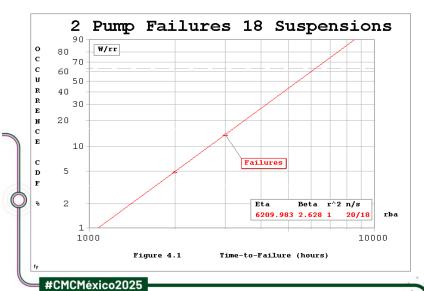

MTBF. vs

The Weibull Data Plot W/rr 95 c 90 80 u r e n c 60 50 40 30 Failures 20 10 \mathbf{C} \mathbf{D} 5 Eta Beta pve% n/s 1096 2.276 74.3 15/0 500 700 1000 2000 3000 Time-to-Failure might be Hours-Cycles-Starts-Landings SuperSMITH(TM) 4.0SD-32 c:\data\0Fig1.1


#CMCMéxico2025

33

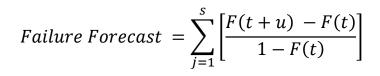
Modelamiento y Predicción usando Weibull



Modelamiento y Predicción usando Weibull

35

Modelamiento y Predicción usando Weibull


	Suspension	
Time (Hs)	s	Failures
1000	5	0
2000	4	1
3000	4	1
4000	5	0
N	20	
Actual F	2	

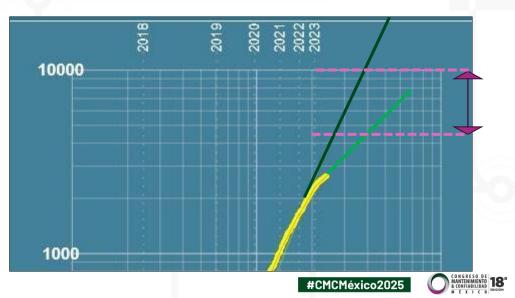
Expected Failures = $\sum_{i=1}^{N} F(t_i)$				
Time	Units	F(t)	n-fore	
1000	5	8,30E-03	0,0415	
2000	5	4,96E-02	0,248	
3000	5	0,1373	0,6865	
4000	5	0,27	1,35	
Forecasted			2,326	
Actual Failures			2	

CONGRESO DE MANTENIMIENTO & CONFIABILIDAD EDICIÓN

Modelamiento y Predicción usando Weibull

		1	-	
		Į,		
	()	

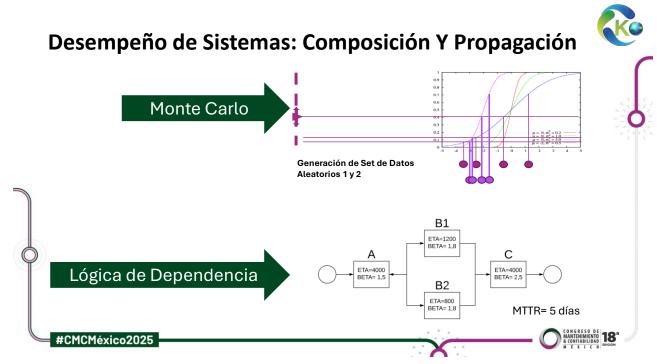
Ν	t	† + U	a=F(t+u)	b=F(t)	N(a-b)/(1-b)
5	1000	2000	.0496	.0082	.2087
4	2000	3000	.1374	.0496	.3695
4	3000	4000	.2700	.1374	.6149
<u>5</u>	4000	5000	.4321	.2700	<u>1.110</u>
				Total	2.30


#CMCMéxico2025

CONGRESO DE MANTENIMIENTO & CONFIABILIDAD MÉXICO

37

Modelamiento y Predicción usando Crow-AMSAA



CONGRESO DE MANTENIMIENTO & CONFIABILIDAD MÉXICO

39

Desempeño de Sistemas: Composición Y Propagación

Digital "Twins" propósito específico (Física / Termodinámica / ... del Proceso)

Variabilidades del Contexto

Clima, Contratos, Precios de Venta, Precios de Compra.

Modos Operacionales (Tipo de Feed, Demanda Variable,...)

Restricciones de Planta y Proceso (Confiabilidad, Mantenimiento, Ciclos de Catalizadores,...)

Configuración Física de la Planta

Estado Real / Actual Medido o Pronosticado de la Planta Activo Digital Ventas / Renta

Costo de Recursos Críticos

Lucro Cesante / Pérdidas

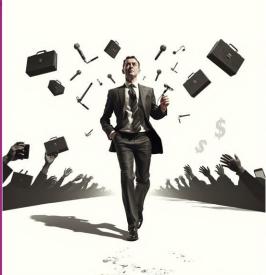
Culpabilidad (¿Dónde perdemos cuánto?)

Costo de Pertenencia (TCO/LCC)

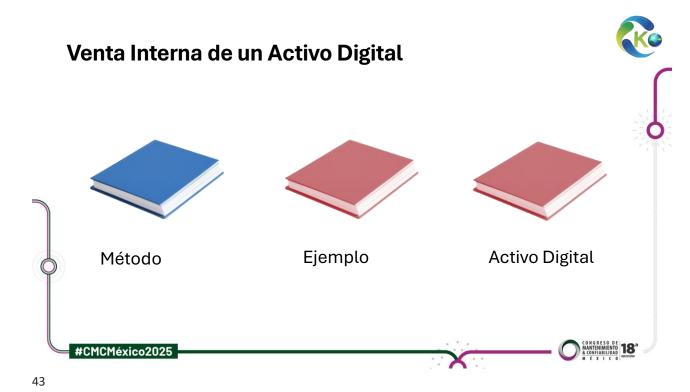
Riesgo

(Pronóstico de Eventos de Criticidad Baja / Media / Alta Esperados)

KPI específicos


Recomendaciones Operacionales

Valoración de Sensibilidades


#CMCMéxico2025

Venta Interna de un Activo Digital Enfócate en las restricciones para la <u>toma de decisiones</u> y piensa en...

- Formulación Específica del Problema
- Condiciones de Alineamiento Estratégico.
- Condiciones Requeridas para la Solución.
- Costos Directos del Desarrollo del Activo Digital.
- Capacidad de Generación de Valor del Activo Digital.
- Retorno de Inversión
- Presentación de Caso de Negocio

#CMCMéxico2025

1. Formulación explícita del Problema

Enfócate en las restricciones para la toma de decisiones y piensa en...

- · Claridad en los Síntomas Observables
- Evaluación de la Multidimensionalidad del Problema
- Estimación de Urgencia y Riesgo
- Incertidumbre sobre las Causas Subyacentes
- Complejidad asociada a Interdependencias

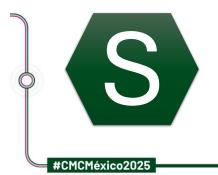
#CMCMéxico2025

45

2. Identificación de las Condiciones de Alineamiento Estratégico

Enfócate en las restricciones para la toma de decisiones y piensa en...

- Relevancia Estratégica
- Alineación con Metas Financieras
- Alineación con Objetivos de Sostenibilidad
- Alineación con Metas de Seguridad
- Alineación con Metas de Competitividad


#CMCMéxico2025

3. Estructuración de las Condiciones Requeridas para la Solución

Enfócate en las restricciones para la toma de decisiones y piensa en...

- Potencialidad para una Solución Integral
- Definición del Alcance del Activo Digital
- Identificación de Capacidades Funcionales del Activo Digital
- Integración con Sistemas Existentes
- Limitaciones del Alcance

47

4. Estimación de Costos directamente Asociados al Desarrollo del Activo Digital

Enfócate en las restricciones para la toma de decisiones y piensa en...

- · Costos de investigación,
- · Modelamiento de Dependencias,
- Análisis de Datos,
- Desarrollo de modelos computacionales, logística, etc.

#CMCMéxico2025

5. Identificación de Riesgos y Formulación y Costeo de Acciones de Mitigación

Enfócate en las restricciones para la toma de decisiones y piensa en...

- Identificación de riesgos técnicos, financieros y culturales
- Formulación de acciones de mitigación
- · Costeo de acciones de mitigación

#CMCMéxico2025

49

6. Estimación de la Capacidad de Generación de Valor del Activo Digital

Enfócate en las restricciones para la toma de decisiones piensa en...

- Identificación de beneficios tangibles e intangibles
- Cuantificación del impacto en confiabilidad operativa y sostenibilidad

#CMCMéxico2025

7. Cálculo del Retorno de la Inversión

Enfócate en las restricciones para la toma de decisiones y piensa en...

- Determinación de costos y beneficios totales
- Cálculo del ROI
- Análisis de sensibilidad
- Período de recuperación de la inversión

#CMCMéxico2025

51

8. Presentación del Caso de Negocio

Enfócate en las restricciones para la toma de decisiones y piensa en...

- !No ser aburrido!
- Resumen ejecutivo
- Visualización de datos clave
- Respuestas a preguntas comunes
- Historias de éxito o pilotos
- Llamado a la acción

#CMCMéxico2025

Conclusiones

A. Determinación de los Costos Totales Costo Inicial de Desarrollo e Implementación \$ 450.000 Costo Anual Recurrente \$ 45.000 Mantenimiento y soporte anual estimado. Costo Total en Año 1 \$ 450.000 Costo inicial \$ 495.000 Costo inicial + (Costo anual recurrente × 1 años). Costo Total 2 Años Costo Total en 3 Años \$ 540,000 Costo inicial + (Costo anual recurrente × 2 años). B. Determinación de los Beneficios Totales Ahorros Anuales en Costos Energéticos \$ 300.000 Reducción del 20% en consumo energético (Paso 6). Multas potenciales evitadas por cumplimiento normativo Evitación de Multas Regulatorias \$ 100.000 (Paso 6). Incremento de Ingresos por Mejora Beneficio Tangible Total Anual \$ 600.000 Beneficio Tangible Acumulado en 3 Años C. Cálculo del ROI \$1.800,000 Beneficio tangible anual × 3 años. ROI = ((Beneficios Totales - Costos Totales) / Costos Fórmula de ROI Totales) × 100%. ROI al Final del Año 1 33,3% ROI al Final del Año 2 142% ROI al Final del Año 3 233% D. Análisis de Sensibilidad Escenario Optimista (Beneficios Beneficios tangibles aumentan en un 10% (\$600,000 × +10%) \$ 660.000 1.10). Escenario Pesimista (Beneficios Beneficios tangibles disminuyen en un 10% (\$600,000 × \$ 540,000 0.90). 10%) Escenario de Aumento de Costos \$ 517,500 Costo inicial aumenta en un 15% (\$490,000 × 1.15) ROI Optimista (Año 3) ROI Pesimista (Año 3) 200% ROI con Aumento de Costos (+15%) 190%

Valor (\$)

#CMCMéxico2025

La real diferencia entre
una decisión,
y una apuesta ,
es un pronóstico pertinente.
Los Activos Digitales te brindan estos pronósticos,
pero exigen de ti,
Pensamiento Probabilístico.