

Presentación del problema

Alto Impacto en CdS por fallas en TF

Pérdida de personal técnico

Registros esporádicos de parámetros del TF

#CMCColombia2025

3

Monitoreo de parámetros del transformador.

Método tradicional

Medición de temperatura de forma local indirecta – Solo disparo

Revisión periódica general cada 1 a 1,5 años

Cromatografía

Reposición de sílica gel

Estado de ventilación forzada

Estado de CBC

Revisión general

NO se monitorea estado de bushings

Alta **tasa de falla** intempestiva

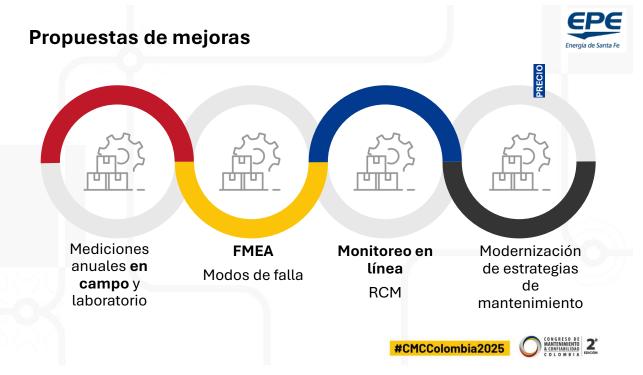
Elevado tiempo de **reposición** de servicio

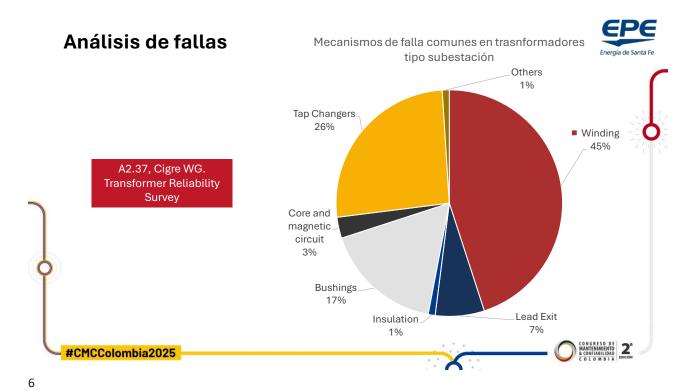
Baja confiabilidad para la operación en sobrecarga

Resultados

Pobre información para análisis de modos de fallas

Desconocimiento del estado general de operación



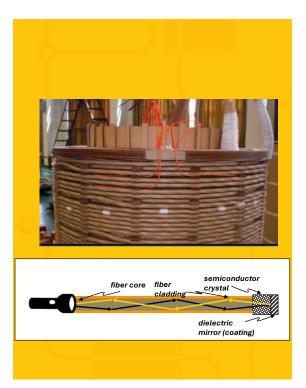

Elevados costos operativos

#CMCColombia2025

Incorporación de Monitoreo en línea - Mantenimiento Centrado en la Confiabilidad

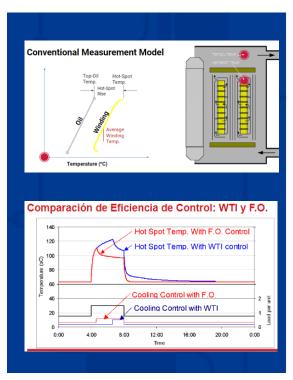
Modelo	Variables	Comentarios
Triangulo de Duval	Gas disuelto Metano, Etano y Acetileno	Optamos por cromatografía gaseosa ya que es la única que garantiza la repetitividad y precisión de las mediciones
Bushings	Capacitancia, Tangente Delta y temperatura del componente	Optamos por el método de tensión de referencia, ya que es el más preciso e independiza los resultados entre ellos
Eficiencia del sistema de enfriamiento	Temperatura de entrada y de salida de los radiadores, estado de los ventiladores activo o no activo y corrientes de arranque	No solo se trata de conocer el delta de temperatura si no el estado de los ventiladores
Humedad contenida en el Aceite	Humedad	Medirla nos permite definir si se requiere una acción de secado para mejorar la condición del papel aislante
Temperatura de puntos calientes	Temperatura dentro del bobinado en diversos puntos	Optamos por la instalación de sensores de fibra óptica para medición directa dentro del bobinado. Elevadas prestaciones y su costo es residual en el precio del transformador
Humedad de "respirado"	Estado de condición de la sílica gel	Optamos por un Secador de humedad de aire que permite regenerar y monitorear el estado de la sílica gel.
Conmutador bajo carga	Posición del conmutador Corriente del motor del conmutador	Permite conocer los tiempos de cambio de tomas y el estado del mecanismo.

#CMCColombia2025


CONGRESO DE MANTENIMIENTO & CONFIABILIDAD

Definiciones iniciales

8



Monitoreo de temperatura de forma directa

- Optimizar la carga sin comprometer la vida de la aislación
- Minimizar tiempo de inicio de sistema de enfriamiento del transformador
- Mejores predicciones de envejecimiento de la aislación y vida útil remanente
- Costo muy bajo al instalar durante la fabricación

9

Monitoreo de temperatura de forma directa

Se instalan **25 FO** en las siguientes ubicaciones

- 4 en fase central por nivel de tensión
- 2 por fase lateral por nivel de tensión
- · 1 para aceite superior

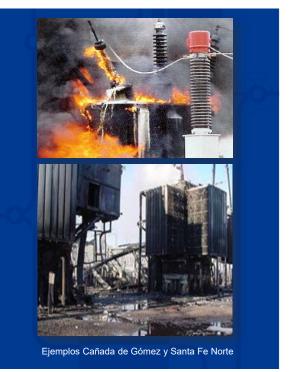
Monitoreo de gases disueltos en al aceite (DGA)

- Detecta la falla en su fase inicial
- Permite acciones correctivas antes que ocurran fallas severas
 - Se detectan 90% de fallas internas con monitoreo en línea
 - Reducción de costos de mantenimiento y reparaciones
- operación Permite la segura del transformador durante toda su vida útil
- Es más confiable seguir la velocidad de cambio de gases con monitoreo en línea que con extracción de muestras y análisis de laboratorios (ref. CIGRE, Dr. Duval)

11

Tabla comparativa tecnologías DGA

	Ventajas	Desventajas
Cromatografía Gaseosa (GC)	 Muy Buena exactitud y repetitividad Límite de detección inferior muy bajo Utiliza un solo sensor Tecnología ampliamente probada Bajo costo de mantenimiento 	Utiliza gas de arrastre de alta pureza como consumible Envejecimiento de la columna cromatográfica, mantenimiento cada 8- 10 años
Infrarrojo no dispersivo (NDIR)	- No utiliza gases de arrastre o calibración	 - La exactitud y repetitividad es mala (15 a 25% de error típico) - Limites de detección altos - Desgaste del sensor
Sensores de estado Sólido (no es DGA)	Bajo costo Puede medir en fase líquida directamente algunos gases Instalación en una única válvula	 Solo puede medir un gas a la vez (H2 o CO) Limite inferior de detección muy alto Solo se puede usar no alarme de gas simple
Espectroscopía fotoacústica (PAS)	No requiere gases de arrastre o calibración Amplia banda de detección	 - Problema de precision en concentraciones altas - Sensibilidad cruzada y contaminación - Sensor sensible a vibración, presión, temp y estrés mecánico. - Costos asociados
		#CMCColombia2025



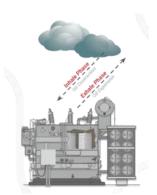
- Según IEC 60567 se podrán entregar resultados reproducibles (repetitividad) solo si la operación y calibración de los parámetros son controlados en forma precisa, pues en caso contrario pueden producirse errores significativos
- La precisión declarada por las especificaciones técnicas de algunos fabricantes no puede ser sustentadas, en tanto que el concepto de calibración es un requerimiento para garantizar la precisión en el tiempo.

Monitoreo de Bushings

- 17% de las fallas de un transformador son debidas a fallas de bushings
- 50% de estas resultan catastróficas
- Altísima probabilidad de incendio, inconvenientes ambientales por fugas de aceite, riesgos a la propiedad y a las personas.

Tabla comparativa tecnologías BM

	Ventajas	Desventajas
Método de corriente de equilibrio	Fácil de implementar	Solo los grandes cambios en las capacitancias o en el factor de potencia pueden ser detectados Los cambios causados por la degradación del material de aislamiento y humedad apenas pueden ser detectados
Método de señal de referencia	 Permite monitorear en forma individual cada uno de los bushings La tangente delta es medida, no calculada Corrección por factor de temperatura 	Es necesario contar con tensiones de referencia


#CMCColombia2025

Monitoreo de secador de humedad del aire

- Los transformadores "respiran" con la expansión y contracción del aceite causada por los cambios de temperatura.
- La humedad de la atmósfera puede ingresar al aceite del transformador cuando el transformador "inhala" durante el funcionamiento normal
- Con el tiempo, la acumulación de agua en el transformador afectará negativamente la vida útil del activo

Regeneración de silica gel en un ciclo de "exhalación" del transformador

Tx INHALA	Tx EXHALA		
PASO 1	PASO 2	PASO 3	PASO 4
El aire atmosférico es succionado a través del respirador y secado por el desecante de gel de silice antes de entrar al	Cuando el desecante se satura con agua, se activa un calentador dentro del tubo.	La humedad retenida en el gel de sílice se condensa en los lados del tubo.	El agua líquida drena por gravedad por el puerto inferior del respirador cuando el transformador está en una fase de "exhalación".
transformador	REGENERACI	ÓN	exitatación .

Tabla comparativa tecnologías secadores

		Ventajas	Desventajas
	Secador tradicional de sílica gel	 Inversión inicial menor (\$) Facilidad de instalación No requiere conexiones eléctricas 	 Necesita mantenimiento adicional regular después de la instalación El gel de silice debe ser desechado Costos adicionales de desecho del gel de silice debido a preocupaciones ambientales Solo indicación visual (cambio de color) sin capacidad de alarma No hay provisión para accesibilidad remota, ni revisión de datos
	Secador regenerador de sílica gel	Mantenimiento de rutina mínimo No es necesario desechar el gel de sílice Incluye relés para comunicar el estado de regeneración y alarma Salida 4-20 mA y comunicaciones para registro continuo de datos Registra niveles de humedad continuamente	Inversión inicial más grande que la de los equipos tradicionales (\$)
#CMC	Colombia2025		0

Costo del activo EPE 100% Sistema de monitoreo completo 6.22% Vida útil del equipo 20 años

Costos asociados (*)			
Mantenimiento general	1.30%	anual	
Entrenamiento	3.00%	una vez	
Infraestructura	6.00%	una vez	
Costo de operación	0.50%	anual	
Software y actualizaciones	5.00%	una vez	

(*) Referidos al valor del sistema de monitoreo

Corolario

19

Impacto del proyecto

En la organización

- Paradigmas culturales
- Incertidumbre
- Oportunidad de cambio

Sobre los activos

- Información en línea
- Alarmas
- Confiabilidad

- Comunición TF Sala
- Tendido FO. Obstrucciones
- Switch LTE
- Accesos remotos
- Arquitectura de comunicaciones
- · Montajes de los fabricantes
- · Nuevos gabinetes
- Mallas PAT de las EETT

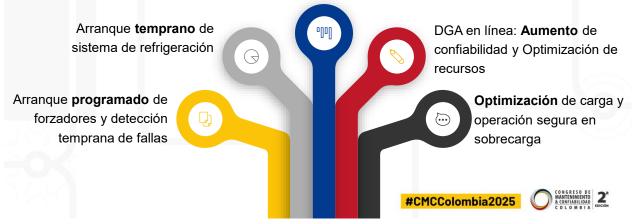
Evaluación del proyecto

Resultados del monitoreo en línea

(15/109) TF – **Mejora** en la toma de decisiones

Optimización del análisis de modelos de falla

Desarrollo de
estrategias de
mantenimiento centrado
en la confiabilidad



Evaluación del proyecto

Beneficios del monitoreo en línea

Secadores inteligentes libres de mantenimiento

23

Futuro del proyecto

100%

Monitorear la
totalidad de la flota
de transformadores
de potencia

Software

02

Incorporar toda la totalidad de la flota monitoreada al software experto Índices

Desarrollar y constituir un índice de salud de cada transformador de la flota

Durante 2025 se espera el ingreso de 8 TF con monitoreo en línea, alcanzando así el 20% de la flota

#CMCColombia2025

