

DECISIONES CUANTIFICADAS EN ESTRATEGIAS DE CONFIABILIDAD

Optimización Costo-Beneficio

Ing. Ind. Santiago Sotuyo Blanco, CMRP, CRL, AMP-S Ingeniero Principal de Confiabilidad – Latino América ARMS Reliability

1

PRESENTACIÓN ING. IND. SANTIAGO SOTUYO BLANCO, CMRP, CRL, AMP-S

Santiago Sotuyo Blanco

Ingeniero Principal de Confiabilidad – Latino América, ARMS RELIABILITY

- Supervisa el desarrollo de proyectos de ARMS Reliability en Latino América, los cuales se centran en ayudar a sus clientes a ser seguros y exitosos, al hacer realidad la confiabilidad.
- Es líder en Latino América en la difusión de la Gestión de Estrategias de Activos. un proceso habilitado por personas, tecnología y datos para mantener un enfoque basado en la confiabilidad para mejorar el rendimiento de los activos.
- Es Ingeniero Industrial Mecánico (Uruguay)
- Es Profesional Certificado CMRP, CRL y AMP-S.
- Es Instructor Certificado de ASM, RAMS, RCM, FMECA, LCC, Weibull, RCA.
- Especializado en Ingeniería de Mantenimiento (Suecia) e Ingeniería de Confiabilidad (Inglaterra).

PRESENTACIÓN ING. IND. SANTIAGO SOTUYO BLANCO, CMRP, CRL, AMP-S

Reconcimientos y Premios:

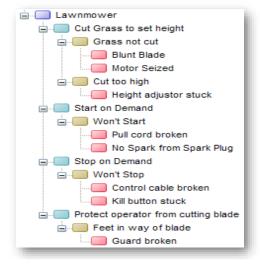
- "Ingeniero Destacado 2021", por la AIU Asociación de Ingenieros del Uruguay. Diciembre 2021.
- "WFEO Distinguished Fellow", por la WFEO/FMOI Federación Mundial de Organizaciones de Ingeniería. Marzo 2022.
- "Contribución al Mundo del Mantenimiento", por el COPIMAN, AMGA y CMC-Latam México, Setiembre 2022.
 - Reconocimientos a sus 37+ años de experiencia laboral y 33+ años como profesional de la ingeniería a nivel internacional.



3

Introducción al RCM

Análisis de Decisiones Cuantificadas en Estrategias de Confiabilidad Optimización Costo-Beneficio



RCM

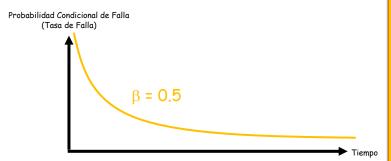
• 1er Paso de RCM: Análisis de Modos de Falla y Efectos (FMECA) para identificar modos de fallo críticos de la planta.

5

FMECA

- El primer paso para preparar una Estrategia consiste en Identificar los Activos y su Contexto de Operación actual
- Análisis Funcional
- Fallas Funcionales
- · Modos de Falla
- · Efectos y Consecuencias de Falla

Bently Nevada ARMS


Entender el comportamiento de falla es importante para determinar el tipo de tareas de mantenimiento que son aplicables

Mortalidad Infantil

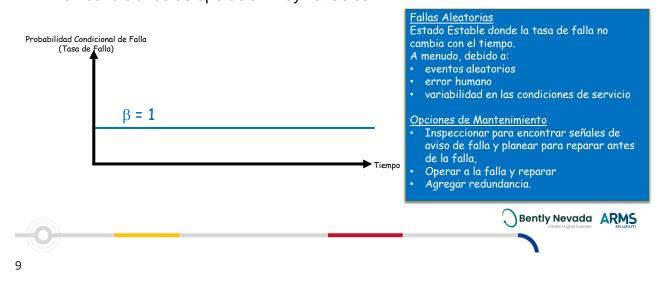
Típica de los equipos electrónicos y los activos mantenidos de forma incorrecta u operados bien fuera de los límites de diseño o instalados en forma inadecuada.

Mortalidad Infantil

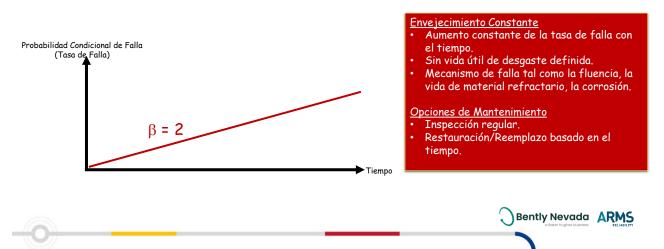
- Alta tasa de falla inicial reduciendo a una tasa constante.
- Conocida como Mortalidad Infantil.
- A menudo indicativo de problemas de calidad, mala instalación o procedimientos de puesta en marcha incorrectos.

Opciones de Mantenimiento

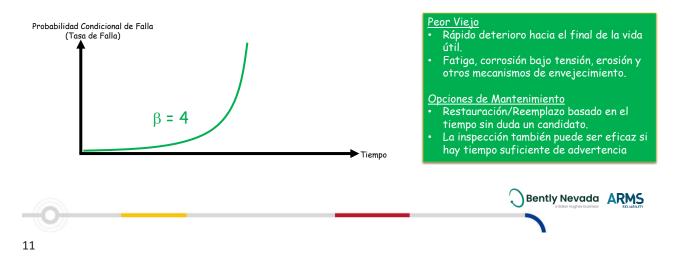
- Análisis Causa Raíz para eliminar la causa de los problemas.
- "Ablande" o apoyo en puesta en marcha para período inicial,
- Inspección.



Fallas Aleatorias

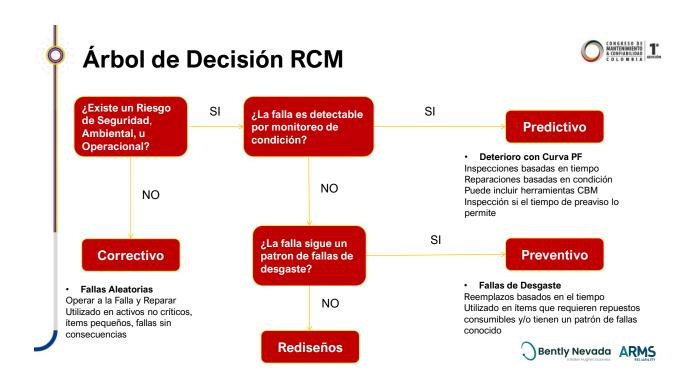

Típico de diseño insuficientes o de operar el activo fuera de especificación o en condiciones de operación muy variables

Envejecimiento Constante


Típico de fallas de corrosión

Desgaste

Típico para aplicaciones de carga de fatiga, o de revestimientos de desgaste abrasivo



Valores de Beta

Beta	Tipo de Componente que Falla
Beta = 0.5	Electrónica, equipo de alta complejidad, sistemas de control avanzado
Beta = 1	Rodamientos
Beta = 1.5	Hidráulica, neumática
Beta = 2	Tuberías, materiales refractarios, neumáticos, embragues, estructuras, motores de turbina
Beta = 4	Pistas, revestimientos, impulsores, mandíbulas trituradoras, bombas de pistón

Justificar Estrategias de Activos

Entender los Objetivos del Negocio Permite que los Costos de Mantenimiento Se Equilibren con los Costos de Falla

14

Selección de Tareas de Mantenimiento

Confiabilidad =
$$e^{-\lambda t}$$

Donde $\lambda = 1/TMEF$

La probabilidad de falla no es siempre la misma a lo largo del tiempo

- Ítems tienen Mortalidad Infantil
- Ítems tienen Desagaste

15

Distribución Weibull

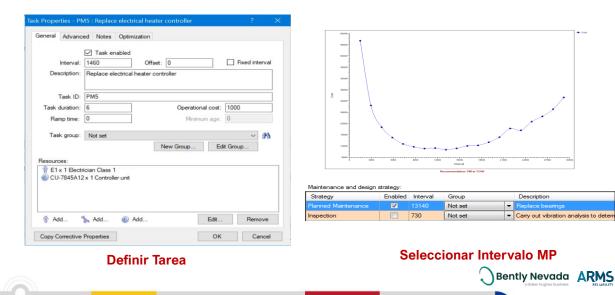
Una fórmula que puede describir los diferentes patrones de falla (formas gráficas) en cada una de las tres zonas.

$$R(T) = e^{-\left(\frac{T}{\eta}\right)^{\beta}}$$
 (Weibull de 2 Parámetros)

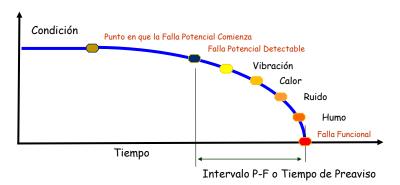
R(T) = Confiabilidad en Tiempo T

T = Tiempo T considerado

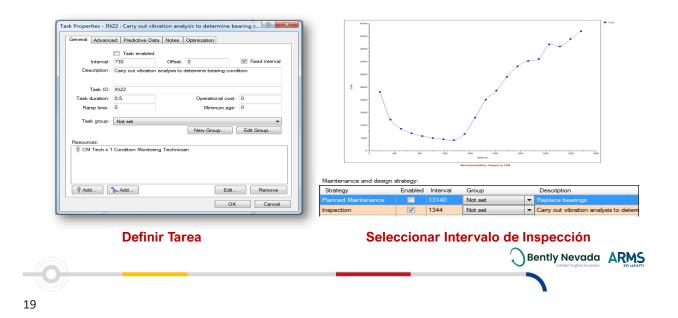
 η = Vida Característica


 β = Parámetro de Forma

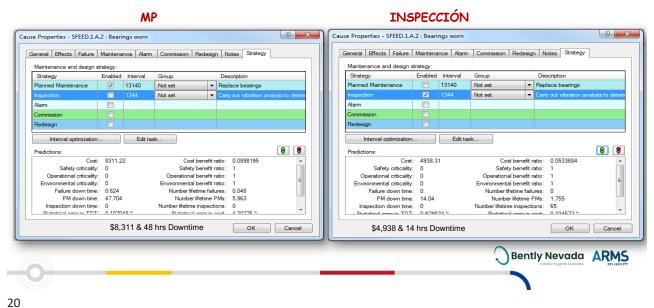
e = 2,71828 (base de los logaritmos naturales)


Tareas de Mantenimiento Preventivo

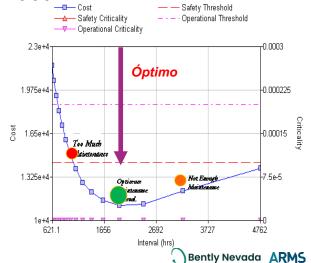
Frecuencia de Tareas de Inspección


- El punto en que la falla es evidente se conoce como punto (tiempo) de falla potencial
- El punto de falla final se conoce como punto (tiempo) de falla funcional
- El tiempo entre el fallo potencial y el fallo funcional se conoce como intervalo P-F.

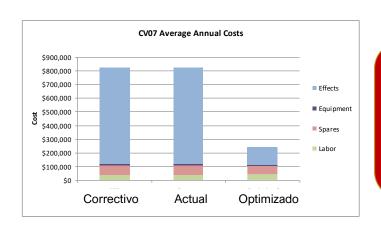
18


Tareas de Inspección

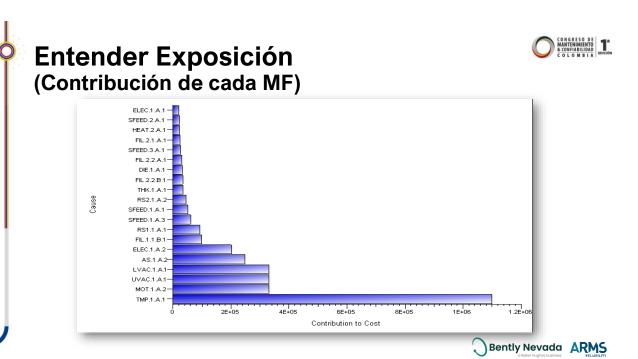
Evaluar Alternativas

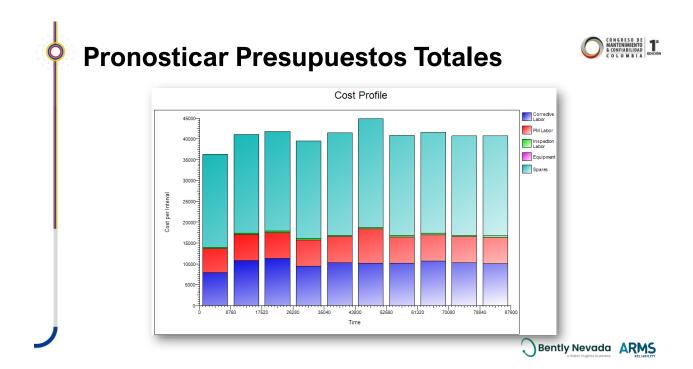


Resultados de Optimización: Frecuencia de Tarea Optimizada


- · Asesoramiento para la toma de decisiones basado en la simulación de desempeño.
- Modelado de redundancia.
- Comparación costo beneficio para estrategias de mantenimiento alternativas.

Comparar Programas (Escenarios)

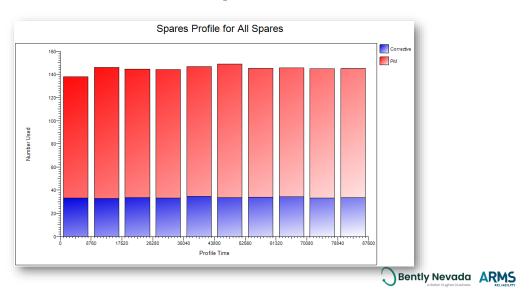



- Escenarios alternativos pueden ser evaluados.
- Empodera al equipo a considerer alternativas.
- Valida el plan de Mantenimiento
 - Gerentes, Técnicos, Reguladores.

23

0

Pronosticar Uso de Mano de Obra



25

Pronosticar Uso de Repuestos

Programa de Confiabilidad Vivo mediante Recolección de Datos

- Lograr una operación más esbelta es el resultado de una evaluación constante de los datos de desempeño
- Esta información ayudará a actuar como una base para la toma de decisiones futuras

27

RCM Brinda

- Una operación segura
- Asegura la eficiencia & confiabilidad de planta
- Provee una base documentada para mantenimiento planeado
- Predice requerimientos de recursos
- Predice uso de repuestos
- Predice presupuesto de mantenimiento

Optimización en Base a Datos Cuantificados

Ejercicio de Decisiones Cuantificadas en Estrategias de Confiabilidad Optimización Costo-Beneficio

29

Ejercicios de RCM

- Este Taller guía a los estudiantes a través de una serie de Ejercicios para ilustrar cómo evaluar diferentes escenarios de mantenimiento.
- 2. El propósito de este Taller es que los alumnos se familiaricen con las variables que influyen en la elección de una tarea óptima de mantenimiento.

Objetivos de Aprendizaje

- Describir e identificar los pasos para la construcción de una tarea de Mantenimiento Correctivo (CM).
- 2. Calcular el costo de una tarea de Mantenimiento Correctivo (CM).
- 3. Describir e identificar los pasos para la construcción de una tarea Preventiva/Predictiva (PM/PdM) optimizada.
- 4. Calcular el costo de una tarea Preventiva/Predictiva (PM/PdM) eficaz.
- 5. Evaluar la eficacia de las soluciones encontradas.
- 6. Evaluar el riesgo de extender los intervalos de tareas o definirlos por calendario.
- Reconocer la sensibilidad a diversos factores que influyen las decisiones de 7. mantenimiento tales como el costo de las fallas y el costo de repuestos.

31

Mantenimiento Correctivo

- Costo de Mantenimiento Correctivo = Numero de Fallas en el Tiempo de Vida de un Sistema x {Costo de la Tarea de Mantenimiento + Costo de la Falla}
 - Numero de Fallas en el Tiempo de Vida de un Sistema = Tiempo de Vida del Sistema/MTBF dado por la simulación durante el tiempo de vida especificado
 - Costo de la Tarea de Mantenimiento = duración x costo de trabajo por hora + costo de repuestos + costos operacionales
 - Costo de Trabajo = número de personas x costo/hora
 - Costo de Repuesto = número de repuestos x costo por unidad
 - Costo de la Falla = {tiempo de tarea + retraso logístico} x costo por hora de parada + costos de única vez

Mantenimiento Correctivo

Ejercicio 1:

- Calcular el Costo de Mantenimiento Correctivo sobre 10000 horas usando los siguientes datos.
 - Numero de fallas = Tiempo de Vida del Sistema/MTBF = 10000/2500 = 4
 - Duración de la tarea = 8 horas
 - Costo por hora de trabajo = \$100
 - Costo de repuestos = \$5000
 - Costo de tareas operacionales = \$2000
 - Retraso logístico = 0
 - Costo por hora de parada = \$175 / hora
 - Costos de falla de única vez = \$10000

33

Mantenimiento Correctivo

Hoja de Cálculo

Mantenimiento Correctivo

Respuesta Ejercicio 1:

 Costo de Mantenimiento Correctivo = Numero de Fallas en el Tiempo de Vida de un Sistema x {Costo de la tarea de mantenimiento + Costo de la Falla}

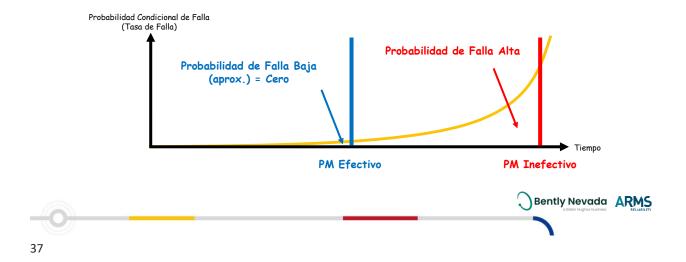
Respuesta

 $= 4 \times \{(8 \times 100/hr + 5000 + 2000) + (8 \times 175/hr + 10000)\}$

= \$76800

35

Mantenimiento Preventivo


- Mantenimiento Preventivo = {Número de tareas completadas x Costo de la tarea PM} + Costo de fallas
 - Numero de tareas = Tiempo de Vida del Sistema / Intervalo
 - Costo del PM = Duración de tarea PM x costo de trabajo + costos de repuestos + costos operacionales
 - Costo de fallas
 - Para PM efectivos = el costo de la falla es cero
 - Para PM inefectivos = número de fallas x costo por parada + costo de única vez.

Efectividad del PM

Weibull – Patrón de Falla de Desgaste y Efectividad del PM.

Mantenimiento Preventivo

Ejercicio 2:

- Calcular el costo total sobre 10000 hrs. usando datos de PM adicionales.
 - Intervalo de PM = 1650 horas
 - Duración de tarea PM = 6 horas
 - Costo de repuestos = \$5000
 - Costo operacional = \$2000
 - El costo de la falla supone que el PM es efectivo en restaurar la vida

Mantenimiento Preventivo

Hoja de Cálculo

39

Mantenimiento Preventivo

Respuesta Ejercicio 2:

- 6 x (6 x \$100 +\$5000 +\$2000) +0 = \$45600
 - Numero de tareas = 10000 hrs / 1650 hrs = 6
 - Costo de PM = 6 x \$100phr + \$5000 + \$2000 = \$ 7600
 - Costo de falla por tarea de PM efectiva = cero

Mantenimiento Preventivo

Ejercicio 3:

- Intente el mismo ejemplo con un intervalo PM de 4900 horas.
 - Calcular el costo total sobre 10000 hrs usando datos de PM adicionales.
 - Intervalo de PM = 4900horas
 - Duración de tarea PM = 6 horas
 - Costo de repuestos = \$5000
 - Costo operacional = \$2000
 - El costo de la falla supone que el PM es efectivo en restaurar la vida

41

Mantenimiento Preventivo

Hoja de Cálculo

Mantenimiento Preventivo

Respuesta Ejercicio 3:

Mantenimiento Preventivo = {Número de tareas completadas x Costo de la tarea PM} + Costo(s) de la falla(s)

- Numero de tareas = 0
- Costo del PM = \$0
- Costo de la falla
 - En este caso el intervalo de PM es demasiado largo y la falla ocurre antes de la parada programada, entonces el costo de la falla será el mismo que el del Mantenimiento Correctivo.
- Costo del Mantenimiento Correctivo incluyendo parada = \$76800

 Bently Nevada ARMS

Discusión Mantenimiento Preventivo

- Sensibilidad:
 - Si el costo del tiempo de parada es bajo, pero el costo de los repuestos es alto, el Correctivo probablemente sea más eficaz que el PM.
 - Si el costo de los repuestos es bajo, entonces los programas PM son probablemente más eficaces.
 - Con certeza la edad de desgaste puede ser un factor significante en determinar la efectividad de las tareas PM.

Mantenimiento Predictivo

- Mantenimiento Predictivo = {Número de inspecciones completadas x Costo de la inspección PdM} + {Número de tareas completadas x Costo de tarea PM} + Costo de fallas
 - Numero de inspecciones/tareas = Tiempo de Vida del Sistema / Intervalo
 - Costo del PdM = Duración de inspección PdM x costo de inspección + costos de instrumentos
 - Costo del PM = Duración de tarea PM x costo de trabajo + costos de repuestos
 + costos operacionales
 - · Costo de fallas
 - Para PdM inefectivos = Nro de fallas x costo por parada + costo de única vez.
 - Para PdM efectivos = el costo de la falla es cero

45

Mantenimiento Predictivo

Ejercicio 4:

- Calcular el costo total sobre 10000 horas usando datos PdM adicionales.
 - Tarea Predictiva:
 - Intervalo PdM = 500 horas
 - Intervalo P-F = 750 horas
 - Duración de la tarea = 0.5 horas
 - Acción Secundaria:
 - Costo de repuesto = \$5000
 - Costo operacional = \$2000

Mantenimiento Predictivo

Hoja de Cálculo

47

Mantenimiento Predictivo

Respuesta Ejercicio 4:

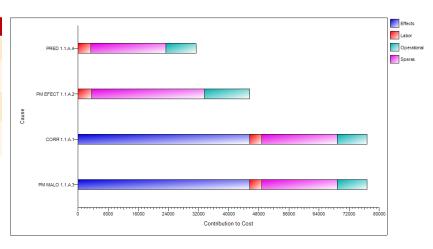
- Numero de reemplazos:
 - MTBF = 2500 horas
 - Tarea PdM @ 500 horas con
 - PF = 750 horas
 - Atraparemos las fallas @ 2000 horas (Aprox.)
 - Entonces 10000 horas / 2000 horas = 5 reemplazos

- Numero de PdM's:
 - 10000 horas/500 horas = 20
 PdM's
 - Costo de falla para un PdM efectivo = cero
- Costo Total = Reemplazo + Costo PdM
 - 5 x \$7600/reemplazo + 20
 PdM's [0.5 horas x \$100/hora]
 - Costo Total = \$39000

Discusión Mantenimiento Predictivo

 El Mantenimiento Predictivo puede reducir los costos de mantenimiento más allá, al permitir a los activos alcanzar el desgaste fuera de la curva y ser mantenidos antes de la falla.

Sensibilidad:


- PdM está restringido por las tecnologías o la capacidad humana de percibir señales de una falla inminente
- No todas las Tareas Preventivas pueden ser reemplazadas por una Inspección
- No todos los Modos de Falla son mejor mitigados con una Tarea Preventiva
- Los intervalos P-F deben ser suficientemente largos para ser rentable y permitir a las Inspecciones identificar fallos prematuros

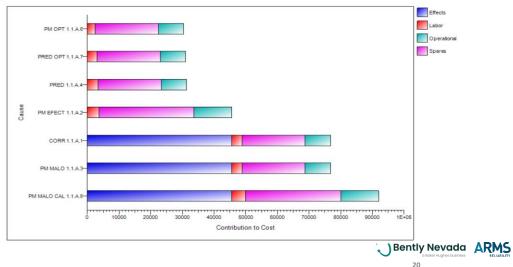
49

Resumen - Tareas de Mantenimiento

Estrategia	Costo Total
Correctiva (CM)	\$76800
Preventiva (PM) Efectiva (1650 hr)	\$45600
Preventiva (PM) Inefectiva (4900 hr)	\$76800
Predictivo (PdM)	\$39000

Resumen - Tareas de Mantenimiento Calendario

Resumen – Tareas de Mantenimiento **Optimización**


Estrategia	Costo Total	CBR
Preventiva (PM) Efectiva Optimizado (2200 hr)	\$30400	39.6%
Predictivo (PdM) Optimizado (750 hr)	\$31050	40.4%
Predictivo (PdM) (500 hr) (en software es \$ 31350)	\$39000	50.8%
Preventiva (PM) Efectiva (1650 hr)	\$45600	59.4%
Preventiva (PM) Inefectiva (4900 hr)	\$76800	100.0%
Correctiva (CM)	\$76800	100.0%
Preventiva (PM) Inefectiva Calendario (4900 hr)	\$92000	119.8%

Bently Nevada ARMS

Resumen – Tareas de Mantenimiento Optimización

53

Santiago Sotuyo Blanco

Ingeniero Principal de Confiabilidad - Latino América ARMS Reliability santiago.sotuyo@bakerhughes.com

SI TIENES PREGUNTAS O COMENTARIOS ¡No dudes en acercarte!

