

1

Presentación de una metodología, un concepto o una mejora práctica y de alto impacto.

En la Sesión Spark aprenderás cómo lograr un cambio a corto plazo, mediante proyectos simples y potentes que impactan la confiabilidad de tu planta, aquí se plantea el problema, el fundamento técnico y el paso a paso de implementación incluyendo los detalles y los beneficios esperados en términos financieros y de confiabilidad.

La Sesión Spark está diseñada para que tengas resultados notorios en tu estrategia.

Ahorro de energía en motores eléctricos mediante lubricación de excelencia

Gerardo Trujillo C.

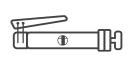
CEO Grupo Noria

3

¿Cuántos motores eléctricos tienes en tu planta?

¿Cuál es su consumo de energía anual?

¿Cuál es el costo anual correspondiente?


Causas de desperdicio de energía en motores eléctricos (por lubricación)

Grasa

- Básico
- Espesante
- Consistencia
- Viscosidad
- Kappa

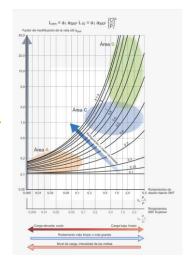
Aplicación

- Cantidad incorrecta
- Frecuencia incorrecta
- Método

Técnico

- Contaminación
- Mezcla de grasas
- Da
 ño de sellos
- Calentamiento

5


)

Impacto de la selección del lubricante

+/-Vida del Rodamiento

- Horas de operación calculadas L₁₀
- Factor de ampliación de vida
- Factor η_c

+/-Consumo de energía

- Momento de fricción
- Fricción (rodante, deslizante y en sellos)
- · Pérdidas por arrastre
- Pérdida de potencia

+/-Emisiones de CO₂

- · Manufactura del rodamiento
- Fricción
- Engrase

Método para ahorro de energía en un motor eléctrico

• Motor eléctrico: 30 HP

• Posición: Horizontal

• Rodamiento 6310

• Fuerza Radial 10.8 kN

• Fuerza Axial = 0

Temperatura aro exterior = 70 °C

• Temperatura aro interior = 65 °C

• RPM = 1,800

Operación 24/7

VARIACIONES:

- 1. Tipo de sellos (abierto, escudos y nitrilo)
- 2. Aceite base Mineral o sintético
- 3. Viscosidad Relación Kappa
- 4. Nivel de contaminación η_c

Motor más común en la industria

7

REFERENCIA ①

Parámetro	Val	or
Relación Kappa	$\frac{27.8}{9.84}$	2.57
Vida del rodamiento	L ₁₀ = 2,010 h	L _{10mh} 22,900 a _{SKF} =11.35
Vida de la grasa	L ₁₀ = 12,500	
Emisión de CO ₂		499.9 kg de CO ₂
Momento de fricción	657 Nmm	124 W Pérdida de potencia
Energía consumida		1,080 kWh

Parámetro	Valor							
Relación Kappa	$\frac{27.8}{9.84}$	2.57						
Vida del rodamiento	L ₁₀ = 2,010 h	L _{10mh} 14,800 a _{SKF} = 7.36						
Vida de la grasa	L ₁₀ = 10,000							
Emisión de CO ₂		313.6 kg de CO ₂						
Momento de fricción	412 Nmm	78 W Pérdida de potencia						
Energía consumida		681 kWh						

9

Variación 2

Parámetro	Val	or
Relación Kappa	50.4 9.84	5.12
Vida del rodamiento	L ₁₀ = 2,010 h	L _{10mh} 17,300 a _{SKF} = 8.6
Vida de la grasa	L ₁₀ = 4630 h	15 g
Emisión de CO ₂		360.8 kg de CO ₂
Momento de fricción	474 Nmm	89 W Pérdida de potencia
Energía consumida		783 kWh

Parámetro	Val	or
Relación Kappa	26.2 9.84	2.66
Vida del rodamiento	L ₁₀ = 2,010 h	L _{10mh} 22,900 a _{SKF} =11.35
Vida de la grasa	L ₁₀ = 3,700 h	15 g
Emisión de CO ₂		316 kg de CO ₂
Momento de fricción	415 Nmm	78 W Pérdida de potencia
Energía consumida		686 kWh

11

Variación 4



Parámetro	Val	or
Relación Kappa	26.2 9.84	2.66
Vida del rodamiento	L ₁₀ = 2,010 h	L _{10mh} 1,490 a _{SKF} =0.74
Vida de la grasa	L ₁₀ = 1,380 h	15 g
Emisión de CO ₂		316 kg de CO ₂
Momento de fricción	415 Nmm	78 W Pérdida de potencia
Energía consumida		686 kWh

Parámetro	Va	lor
Relación Kappa	12.4 9.84	1.26
Vida del rodamiento	L ₁₀ = 2,010 h	L _{10mh} 9,460 a _{SKF} =4.69
Vida de la grasa	L ₁₀ = 4,630 h	15 g
Emisión de CO ₂		287.3 kg de CO ₂
Momento de fricción	379 Nmm	71 W Pérdida de potencia
Energía consumida		623 kWh

13

Variación 6

Parámetro	Val	or
Relación Kappa	30.5 9.84	3.09
Vida del rodamiento	L ₁₀ = 2,010 h	L _{10mh} 14,700 a _{SKF} = 7.31
Vida de la grasa	L ₁₀ = 4630 h	15 g
Emisión de CO ₂		325.5 kg de CO ₂
Momento de fricción	428 Nmm	81 W Pérdida de potencia
Energía consumida		706 kWh

Parámetro	Val	or
Relación Kappa	30.5 9.84	3.09
Vida del rodamiento	L ₁₀ = 2,010 h	L _{10mh} 1,630 a _{SKF} =0.81
Vida de la grasa	L ₁₀ = 1,380 h	15 g
Emisión de CO ₂		325.5 kg de CO ₂
Momento de fricción	428 Nmm	81 W Pérdida de potencia
Energía consumida		706 kWh

15

Variación 8

Parámetro	Val	or
Relación Kappa	22.6 9.84	2.3
Vida del rodamiento	L ₁₀ = 2,010 h	L _{10mh} 11,700 a _{SKF} =5.83
Vida de la grasa	L ₁₀ = 3,700 h	15 g
Emisión de CO ₂		306.5 kg de CO ₂
Momento de fricción	402 Nmm	76 W Pérdida de potencia
Energía consumida		665 kWh

VARIACIÓN	RODAMIENTO	ESPESANTE	NLGI	BÁSICO	V40 (cSt)	ENGRASE (g)	KAPPA	υlu	VIDA GRASA (h)	VIDA RODAMIENTO (h)	CO ₂ (kg)	FRICCIÓN (Nmm)	POTENCIA PERDIDA (W)	ENERGÍA CONSUMIDA (KWh)	CONSUMO VS 2RS	AHORRO VS 2RS
0	2RS1	Li	3	MIN	100	No	2.6	0.80	12,500	22,900	500	657	124	1,080	1.00	0%
1	2Z	Li	3	MIN	100	No	2.6	0.62	10,000	14,800	314	412	78	681	63%	37%
2	6310	Li-X	2	MIN	220	15	5.1	0.62	4,630	17,300	361	474	89	783	73%	28%
3	6310	Li	2	MIN	100	15	2.7	0.62	3,700	22,900	316	415	78	686	64%	36%
4	6310	Li	2	MIN	100	15	2.7	0.10	1,380	1,490	316	415	78	686	64%	36%
5	6310	Li-Ca	2	PAO	32	15	1.3	0.62	4,630	9,460	287	379	71	623	58%	42%
6	6310	Pu	2	MIN	115	15	3.1	0.62	4,630	14,700	326	428	81	706	65%	35%
7	6310	Pu	2	MIN	115	15	3.1	0.10	1,380	1,630	326	428	81	706	65%	35%
8	6310	Pu	2	Éster	80	15	2.7	0.62	3,700	11,700	307	402	76	665	62%	38%

17

Rodamiento Sellado

La MAYOR vida del rodamiento

74% MAYOR

1,080 kWh

consumo de energía

Comparado contra Grasa sintética

PAO ISO VG 32

73% MAYOR

500
kg/año

Generación de CO₂

Comparado contra Grasa sintética
PAO ISO VG 32

O

Grasa Multipropósito Litio Complejo ISO VG 220 (Variante2)

24% MENOR vida del rodamiento Comparado contra el 2RS

26% MAYOR

783 kWh

Consumo de energía Comparado contra Grasa sintética PAO ISO VG 32

361 kg/año

26% MAYOR

generación de CO₂

Comparado contra Grasa sintética
PAO ISO VG 32

19

Grasa sintética PAO ISO VG 32 (Variante 5)

9,460 h 59% MENOR vida del rodamiento Comparado contra el 2RS

El MENOR consumo de energía

La MENOR generación de CO₂

Selección de la grasa óptima para los objetivos de la organización

Limpieza de la grasa durante la aplicación

21

- Cantidad de relleno inicial
- Cantidad en la relubricación
- Frecuencia de relubricación
- Uso de ultrasonido
- · Identificación de lubricantes
- Técnica de relubricación manual
- Selección de lubricadores automáticos
- Sistemas centralizados
- Manejo de grasas
- Técnicas de relleno
- Inspecciones de lubricación

Compromiso de la lubricación con la conservación de la energía, el cuidado y preservación de nuestro planeta y la economía circular

23

Gerardo Trujillo

gtrujillo@noria.mx