

CONGRESO DE MANTENIMIENTO & CONFIABILIDAD CHILE EDICIÓN

SELECCIÓN Y OPTIMIZACIÓN DE TAREAS DE MANTENIMIENTO

Ing. Ind. Santiago Sotuyo Blanco, CMRP, CRL, AMP-S

Ingeniero Principal de Confiabilidad – Latino América ARMS Reliability

PRESENTACIÓN ING. IND. SANTIAGO SOTUYO BLANCO, CMRP, CRL, AMP-S

Santiago Sotuyo Blanco

Ingeniero Principal de Confiabilidad – Latino América, ARMS RELIABILITY

Supervisa el desarrollo de proyectos de ARMS Reliability en Latino América, los cuales se centran en ayudar a sus clientes a ser seguros y exitosos, al hacer realidad la confiabilidad.

Es líder en Latino América en la difusión de la Gestión de Estrategias de Activos, un proceso habilitado por personas, tecnología y datos para mantener un enfoque basado en la confiabilidad para mejorar el rendimiento de los activos.

Es Ingeniero Industrial Mecánico (Uruguay)

Es Profesional Certificado CMRP, CRL y AMP-S.

Es Instructor Certificado de Apollo Análisis Causa Raíz ®.

Especializado en Ingeniería de Mantenimiento (Suecia) e Ingeniería de Confiabilidad (Inglaterra).

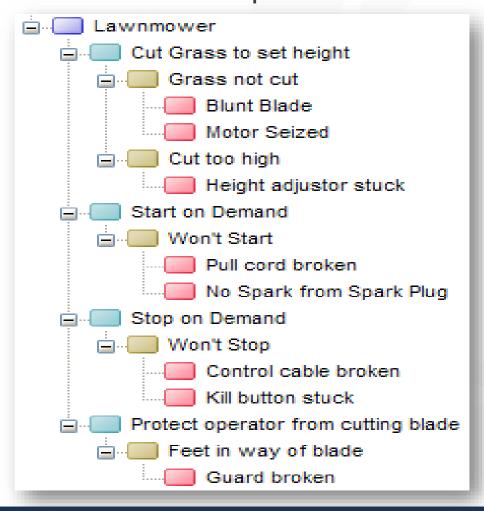
PRESENTACIÓN ING. IND. SANTIAGO SOTUYO BLANCO, CMRP, CRL, AMP-S

Reconcimientos y Premios:

- "Ingeniero Destacado 2021", por la AIU Asociación de Ingenieros del Uruguay. Diciembre 2021.
- "WFEO Distinguished Fellow", por la WFEO/FMOI Federación Mundial de Organizaciones de Ingeniería. Marzo 2022.
- "Contribución al Mundo del Mantenimiento", por el COPIMAN, AMGA y CMC-Latam México. Setiembre 2022.
 - Reconocimientos a sus 37+ años de experiencia laboral y 33+ años como profesional de la ingeniería a nivel internacional.

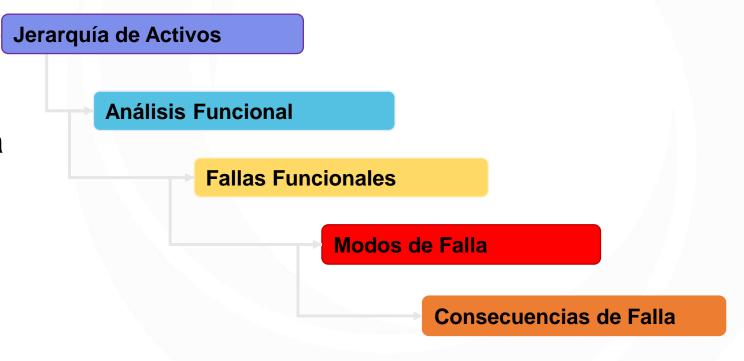
Introducción al RCM

Análisis de Selección y Optimización de Tareas de Mantenimiento



RCM

 1er Paso de RCM: Análisis de Modos de Falla y Efectos (FMECA) para identificar modos de fallo críticos de la planta.



FMECA

- El primer paso para preparar una Estrategia consiste en Identificar los Activos y su Contexto de Operación actual
- Análisis Funcional
- Fallas Funcionales
- Modos de Falla
- Efectos y Consecuencias de Falla

Falla vs Tarea

Entender el comportamiento de falla es importante para determinar el tipo de tareas de mantenimiento que son aplicables

Mortalidad Infantil

Típica de los equipos electrónicos y los activos mantenidos de forma incorrecta o operados bien fuera de los límites de diseño o instalados en forma inadecuada.

Mortalidad Infantil

- Alta tasa de falla inicial reduciendo a una tasa constante.
- Conocida como Mortalidad Infantil.
- A menudo indicativo de problemas de calidad, mala instalación o procedimientos de puesta en marcha incorrectos.

Opciones de Mantenimiento


- Análisis Causa Raíz para eliminar la causa de los problemas,
- "Ablande" o apoyo en puesta en marcha para período inicial,
- Inspección.

Fallas Aleatorias

Típico de diseño insuficientes o de operar el activo fuera de especificación o en condiciones de operación muy variables

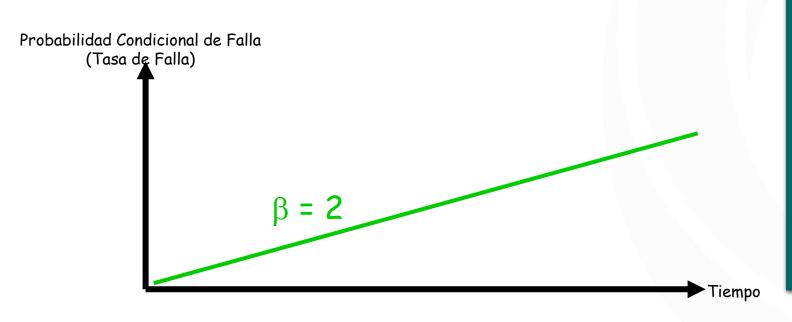
Fallas Aleatorias

Estado Estable donde la tasa de falla no cambia con el tiempo.

A menudo, debido a:

- eventos aleatorios
- error humano
- variabilidad en las condiciones de servicio

Opciones de Mantenimiento


- Inspeccionar para encontrar señales de aviso de falla y planear para reparar antes de la falla.
- Operar a la falla y reparar
- Agregar redundancia.

CONGRESO DE MANTENIMIENTO & CONFIABILIDAD CHILE

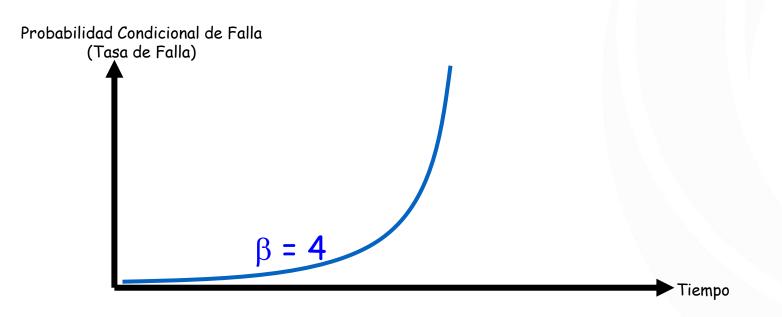
Envejecimiento Constante

Típico de fallas de corrosión

Envejecimiento Constante

- Aumento constante de la tasa de falla con el tiempo.
- Sin vida útil de desgaste definida.
- Mecanismo de falla tal como la fluencia, la vida de material refractario, la corrosión.

Opciones de Mantenimiento


- Inspección regular.
- Restauración/Reemplazo basado en el tiempo.

Desgaste

Típico para aplicaciones de carga de fatiga, o de revestimientos de desgaste abrasivo

Peor Viejo

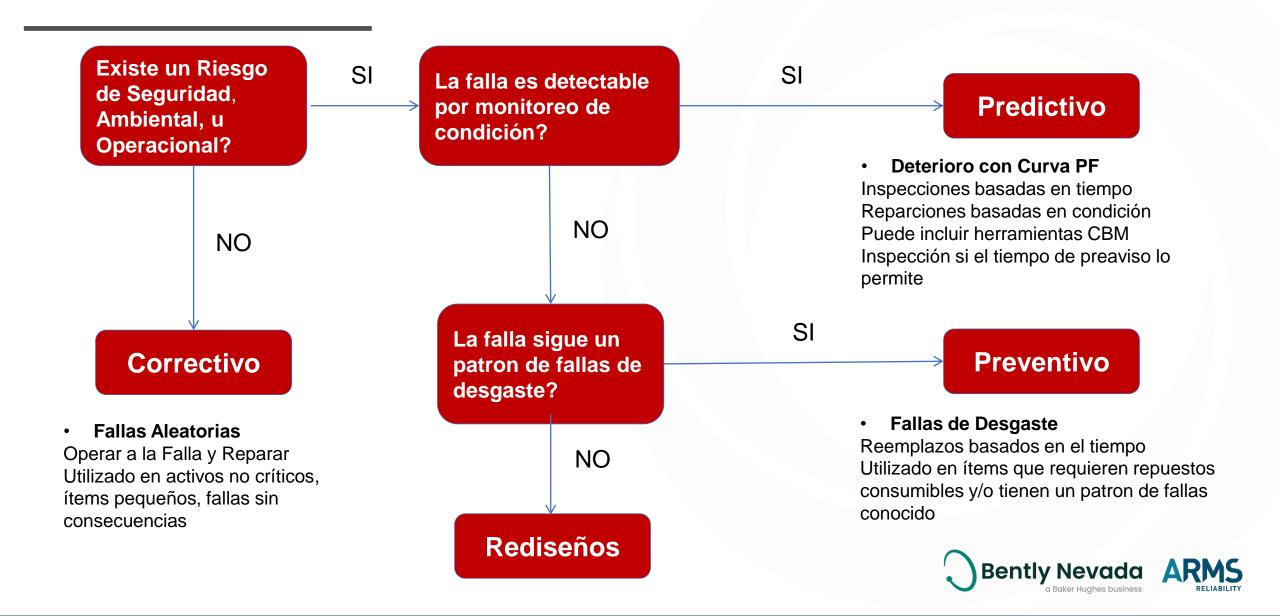
Rápido deterioro hacia el final de la vida útil. Fatiga, corrosión bajo tensión, erosión y otros mecanismos de envejecimiento.

Opciones de Mantenimiento

Restauración/Reemplazo basado en el tiempo sin duda un candidato.

La inspección también puede ser eficaz si hay tiempo suficiente de advertencia

Valores de Beta



Beta	Tipo de Componente que Falla
Beta = 0.5	Electrónica, equipo de alta complejidad, sistemas de control avanzado
Beta = 1	Rodamientos
Beta = 1.5	Hidráulica, neumática
Beta = 2	Tuberías, materiales refractarios, neumáticos, embragues, estructuras, motores de turbina
Beta = 4	Pistas, revestimientos, impulsores, mandíbulas trituradoras, bombas de pistón

Árbol de Decisión RCM

Justificar Estrategias de Activos

Lograr el desempeño y la seguridad de la planta planeados, a los costos óptimos de recursos.

- Desempeño de Producción: cantidad y calidad
- Disponibilidad de Planta
- Seguridad & requerimientos Estatutarios
- \$Eficiencia Operacional

Se determina la estrategia de mantenimiento para cada elemento de equipo que se puede mantener.

Tarea de mantenimiento a una frecuencia, duración, materiales y recursos de mano de obra especificados.

Entender los Objetivos del Negocio Permite que los Costos de Mantenimiento Se Equilibren con los Costos de Falla

Selección de Tareas de Mantenimiento

Confiabilidad =
$$e^{-\lambda t}$$

Donde $\lambda = 1/TMEF$

La probabilidad de falla no es siempre la misma a lo largo del tiempo

- Ítems tienen Mortalidad Infantil
- Ítems tienen Desagaste

Una fórmula que puede describir los diferentes patrones de falla (formas gráficas) en cada una de las tres zonas.

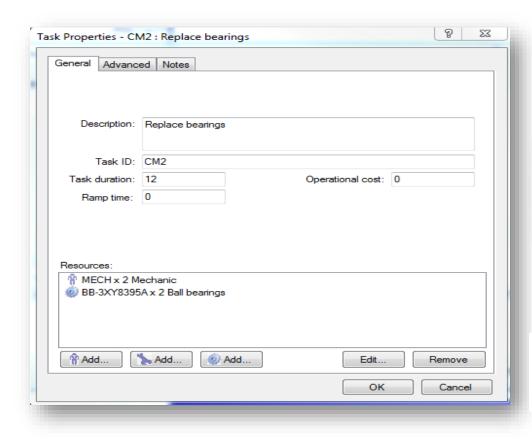
$$R(T) = e^{-\left(\frac{T}{\eta}\right)^{\beta}}$$

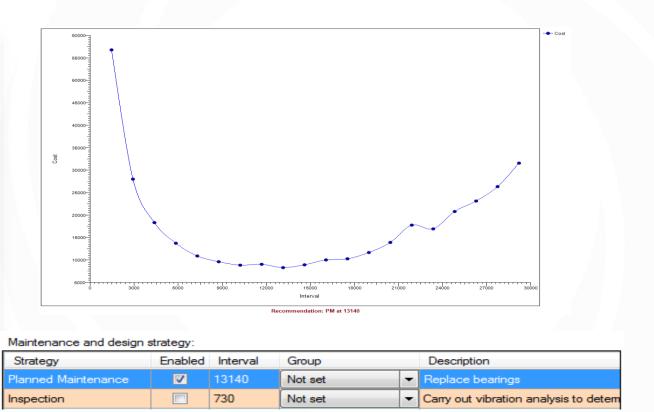
(Weibull de 2 Parámetros)

R(T) = Confiabilidad en Tiempo T

T = Tiempo T considerado

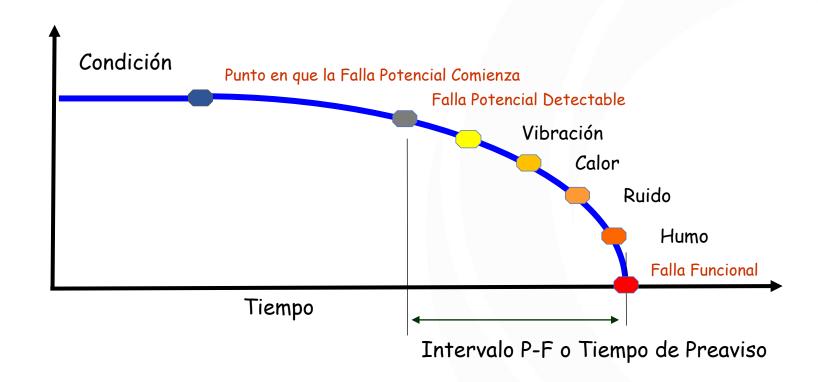
n = Vida Característica


β = Parámetro de Forma

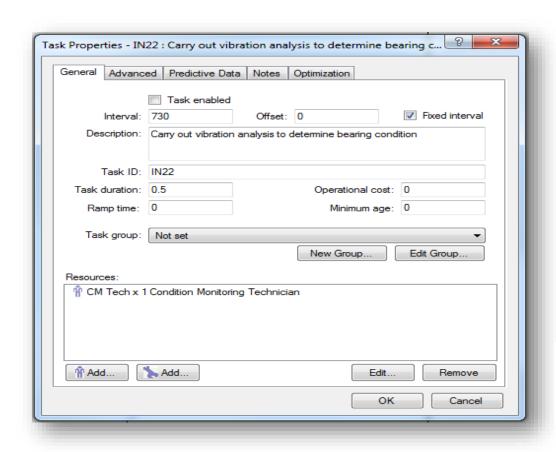

e = 2,71828 (base de los logaritmos naturales)

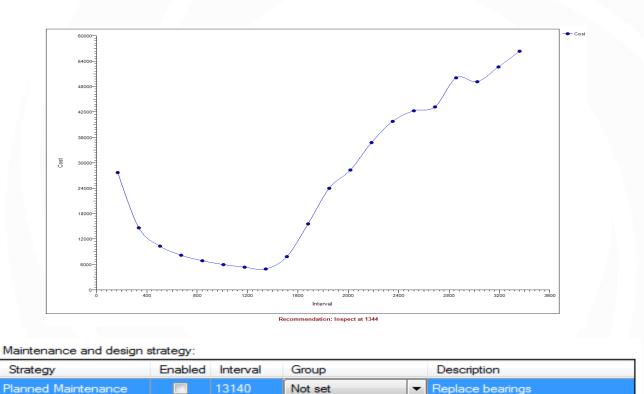
Tareas de Mantenimiento Preventivo

Definir Tarea


Seleccionar Intervalo MP

Frecuencia de Tareas de Inspección




- El punto en que la falla es evidente se conoce como punto (tiempo) de falla potencial
- El punto de falla final se conoce como punto (tiempo) de falla funcional
- El tiempo entre el fallo potencial y el fallo funcional se conoce como intervalo P-F.

Definir Tarea

Seleccionar Intervalo de Inspección

Not set

1

1344

Inspection

Carry out vibration analysis to determ

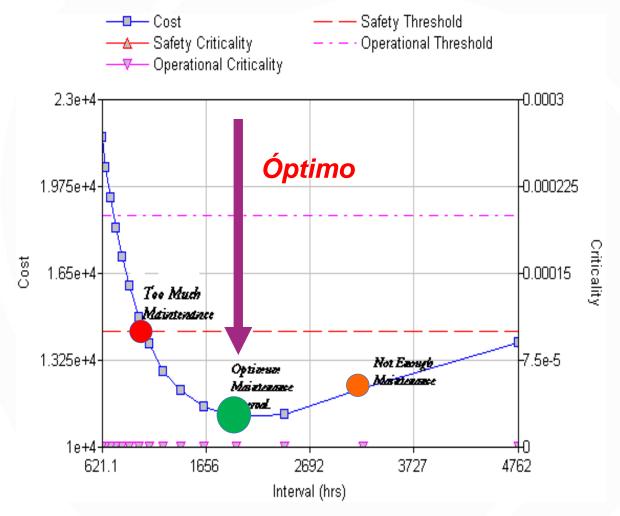
Evaluar Alternativas

MP

? X Cause Properties - SFEED.1.A.2: Bearings worn General Effects Failure Maintenance Alarm Commission Redesign Notes Maintenance and design strategy: Group Strategy Enabled Interval Description ▼ Replace bearings Planned Maintenance 13140 Not set Not set Carry out vibration analysis to deter Inspection Alarm Commission Redesign Interval optimization... Edit task. 8 Predictions: Cost: 8311.22 Cost benefit ratio: 0.0898195 Safety criticality: 0 Safety benefit ratio: 1 Operational benefit ratio: 1 Operational criticality: 0 Environmental benefit ratio: Environmental criticality: 0 Number lifetime failures: 0.048 Failure down time: 0.624 PM down time: 47.704 Number lifetime PMs: 5.963 Inspection down time: 0 Number lifetime inspections: 0 Chatiatical agentic TDT: 0.1070/40 % \$8,311 & 48 hrs Downtime OK Cancel

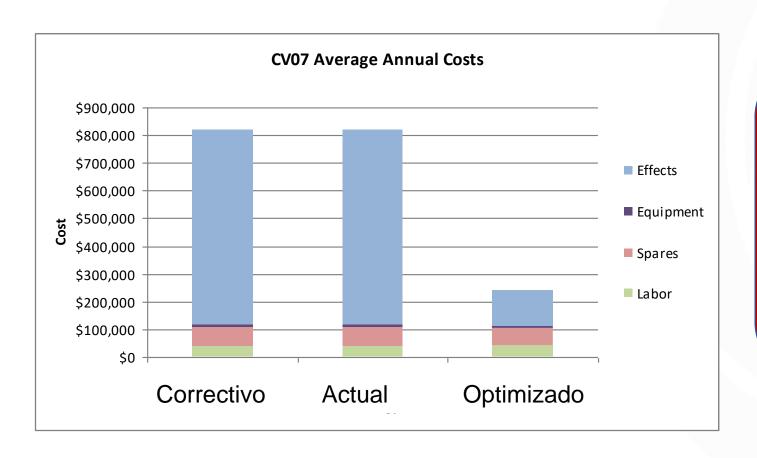
INSPECCIÓN

General Effects Failure		Maintenance		Alarm	Commission	Rec	desigr	n Notes	Strategy			
Mainter	nance and	d design s	strategy:									
Strategy		Enabled Interval		rval	Group D			Description	escription			
Planned Maintenance				13140		Not set			Replace bearings			
Inspect	ion		V	134	4	Not set		-	Carry out	vibration an	alysis to o	leten
Alam												
Commis	sion											
Redesi	gn											
Predicti	nterval op ons:	umzauom			Edit tas	K					8	8
Cost: 4938.31						Cost benefit ratio: 0.0533684						
Safety criticality			: 0			Safe	ety ber	nefit n	atio: 1			
Operational criticality			: 0	Operational benefit ratio:				atio: 1				
Environmental criticality			: 0			Environmental benefit ratio:						Ξ
Failure down time			: 0			Number	e failu	ıres: 0				
PM down time			: 14.04			Numb	ime F	Ms: 1.75	5			
Inspection down time						Number lifeti	pecti	ons: 65				
Chatistical agent in TDT: 0.0700000 % Chatistical agent in cost:								n 22	4E70 %			

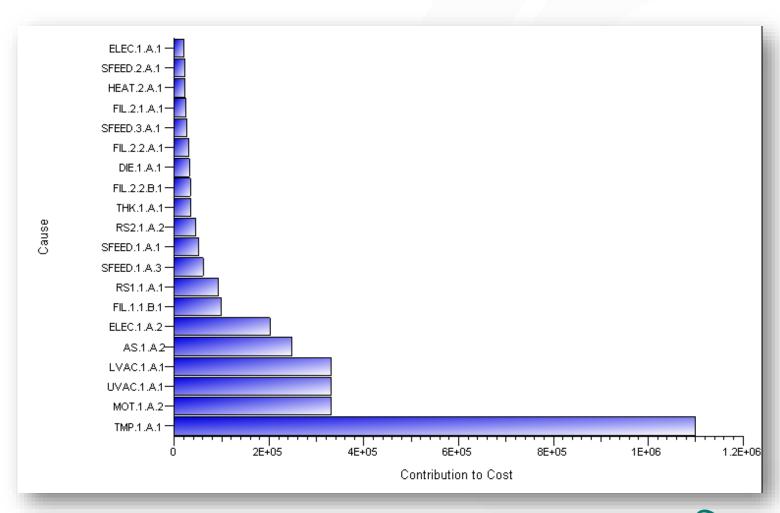


Resultados de Optimización: Frecuencia de Tarea Optimizada

- Asesoramiento para la toma de decisiones basado en la simulación de desempeño.
- Modelado de redundancia.
- Comparación costo beneficio para estrategias de mantenimiento alternativas.

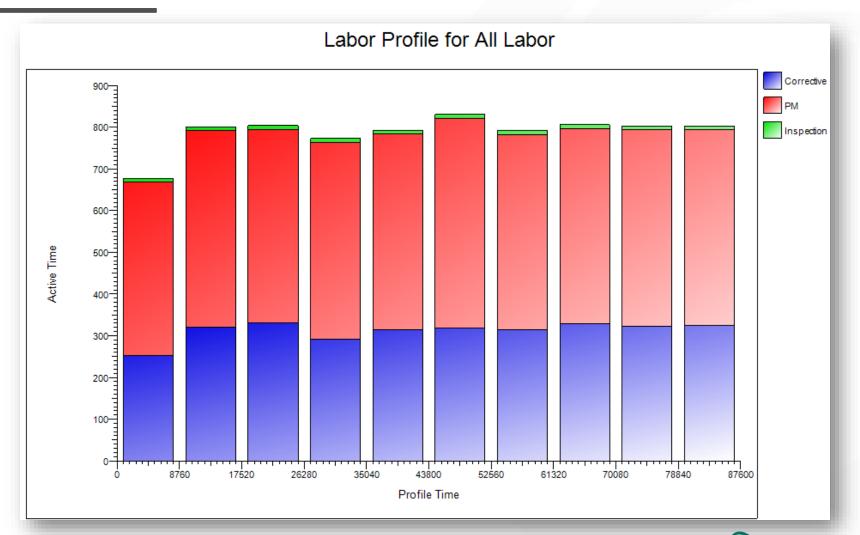


Comparar Programas (Escenarios)

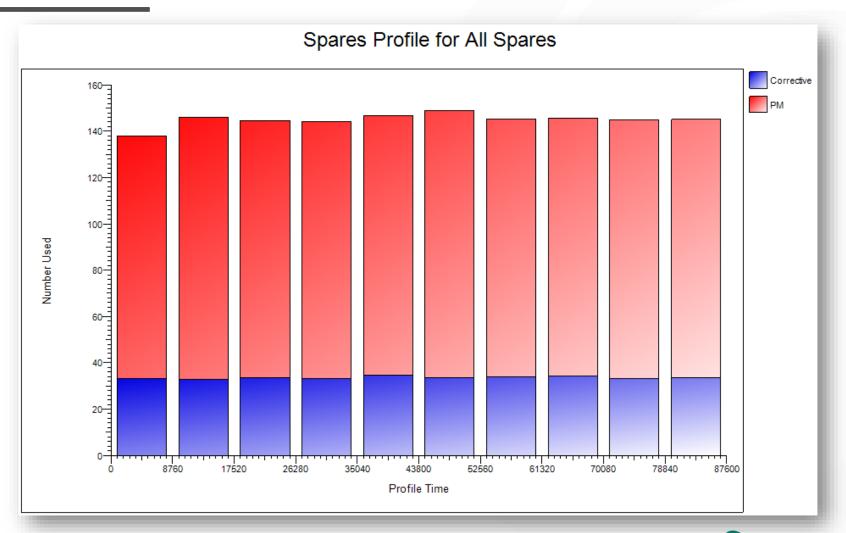

- Escenarios alternativos pueden ser evaluados.
- Empodera al equipo a considerer alternativas.
- Valida el plan de Mantenimiento para:
 - Gerentes, Técnicos, Reguladores.

Entender Exposición (Contribución de cada MF)

Pronosticar Presupuestos Totales



Pronosticar Uso de Mano de Obra



CONGRESO DE MANTENIMIENTO & CONFIABILIDAD CHILE EDICIÓN

Pronosticar Uso de Repuestos

Programa de Confiabilidad Vivo mediante Recolección de Datos

- Lograr una operación más esbelta es el resultado de una evaluación constante de los datos de desempeño
- Esta información ayudará a actuar como una base para la toma de decisiones futuras

RCM Brinda

- Una operación segura
- Asegura la eficiencia & confiabilidad de planta
- Provee una base documentada para mantenimiento planeado
- Predice requerimientos de recursos
- Predice uso de repuestos
- Predice presupuesto de mantenimiento

Optimización en Base a Datos Cuantificados

Ejercicio de Selección y Optimización de Tareas de Mantenimiento

Ejercicios de RCM

- 1. Este Taller guía a los estudiantes a través de una serie de Ejercicios para ilustrar cómo evaluar diferentes escenarios de mantenimiento.
- 2. El propósito de este Taller es que los alumnos se familiaricen con las variables que influyen en la elección de una tarea óptima de mantenimiento.

Objetivos de Aprendizaje

- 1. Comprender el cálculo para evaluar el costo de Mantenimiento Correctivo.
- Conocer los pasos para la construcción de una tarea de Mantenimiento Correctivo.
- 3. Saber calcular el costo de una tarea Preventiva/Predictiva (PM/PdM) eficaz.
- Conocer los pasos para la construcción de un Preventiva/Predictiva (PM/PdM)
 optimizado.
- 5. Saber cuando usted ha encontrado una solución eficaz
- 6. Reconocer los factores sensibles que influyen las decisiones de mantenimiento tales como el costo de las fallas y el costo de repuestos.

- Costo de Mantenimiento Correctivo = Numero de Fallas en el Tiempo de Vida de un Sistema x {Costo de la Tarea de Mantenimiento + Costo de la Falla}
 - Numero de Fallas en el Tiempo de Vida de un Sistema = Tiempo de Vida del Sistema/MTBF dado por la simulación durante el tiempo de vida especificado
 - Costo de la Tarea de Mantenimiento = duración x costo de trabajo por hora + costo de repuestos + costos operacionales
 - Costo de Trabajo = numero de personas x costo/hora
 - Costo de Repuesto = numero de repuestos x costo por unidad
 - Costo de la Falla = {tiempo de parada + retraso logístico} x costo unitario por parada + costos de única vez

Ejercicio 1:

- Calcular el Costo de Mantenimiento Correctivo sobre 10,000 horas usando los siguientes datos.
 - Numero de fallas = Tiempo de Vida del Sistema/ MTBF=10,000/2,500 = 4
 - Duración de la tarea=8 horas
 - Costo por hora de trabajo \$100
 - Repuestos = \$5000
 - Costo de tareas operacionales = \$2000
 - Retraso logístico = 0
 - Costo unitario por parada= \$175 / hora
 - Costos de falla de vez única = \$10,000.

Hoja de Cálculo

Respuesta Ejercicio 1:

 Costo de Mantenimiento Correctivo = Numero de Fallas en el Tiempo de Vida de un Sistema x {Costo de la tarea de mantenimiento + Costo de la Falla}

Respuesta

```
= 4 \times \{(8 \times \$100/hr + \$5000 + \$2000) + (8 \times \$175/hr + \$10,000)\}
```

= \$76,800

MANTENIMIENTO & CONFIABILIDAD EDICIÓN

Mantenimiento Preventivo

- Mantenimiento Preventivo = {Número de tareas completadas x Costo de la tarea
 PM} + Costo de fallas
 - Numero de tareas = Tiempo de Vida del Sistema / Intervalo
 - Costo del PM = Duración de tarea PM x costo de trabajo + costos de repuestos + costos operacionales
 - Costo de fallas
 - Para PM efectivos = el costo de la falla es cero
 - Para PM inefectivos = numero de fallas x costo por parada + costo de vez única.

Ejercicio 2:

- Calcular el costo total sobre 10,000 hrs. usando datos de PM adicionales.
 - Intervalo de PM = 1650 horas
 - Duración de tarea PM = 6 horas
 - Repuestos \$5000
 - Costo operacional \$2000
 - El costo de la falla supone que el PM es efectivo en restaurar la vida

Hoja de Cálculo

Respuesta Ejercicio 2:

- $6 \times (6 \times \$100 + \$5000 + \$2000) + 0 = \$45,600$
 - Numero de tareas = 10000 hrs / 1650 hrs = 6
 - Costo de PM = 6×100 phr + 5000 + 2000 = 7600
 - Costo de falla por tarea de PM efectiva = cero

Ejercicio 3:

- Intente el mismo ejemplo con un intervalo PM de 4,900 horas.
 - Calcular el costo total sobre 10,000 hrs usando datos de PM adicionales.
 - Intervalo de PM = 4,900horas
 - Duración de tarea PM = 6 horas
 - Repuestos \$5000
 - Costo operacional \$2000
 - El costo de la falla supone que el PM es efectivo en restaurar la vida

Hoja de Cálculo

Respuesta Ejercicio 3:

Mantenimiento Preventivo = {Número de tareas completadas x Costo de la tarea PM} + Costo(s) de la falla(s)

- Numero de tareas = 0
- Costo del PM = \$0
- Costo de la falla
 - En este caso el intervalo de PM es demasiado largo y la falla ocurre antes de la parada programada, entonces el costo de la falla será el mismo que el del Mantenimiento Correctivo.
- Costo del Mantenimiento Correctivo incluyendo parada = \$76,800

CONGRESO DE MANTENIMIENTO & CONFIABILIDAD CONFIABILIDAD EDICIÓN

Discusión Mantenimiento Preventivo

 La reducción de costos de mantenimiento mediante la extensión del intervalo más allá de la edad de desgaste, conduce a mayores costos generales.

Sensibilidad:

- Si el costo del tiempo de parada es bajo, pero el costo de los repuestos es alto, el Correctivo probablemente sea mas eficaz que el PM.
- Si el costo de los repuestos es bajo, entonces los programas PM son probablemente mas eficaces.
- Con certeza la edad de desgaste puede ser un factor significante en determinar la efectividad de las tareas PM.

Mantenimiento Predictivo

Ejercicio 4:

- Calcular el costo total sobre 10,000 horas usando datos PdM adicionales.
 - Tarea Predictiva:
 - Intervalo PdM = 500 horas
 - Intervalo P-F = 750 horas
 - Duración de la tarea = 0.5 horas
 - Acción Secundaria:
 - Repuesto \$5000
 - Costo operacional \$2000

Mantenimiento Predictivo

Hoja de Cálculo

Mantenimiento Predictivo

Respuesta Ejercicio 4:

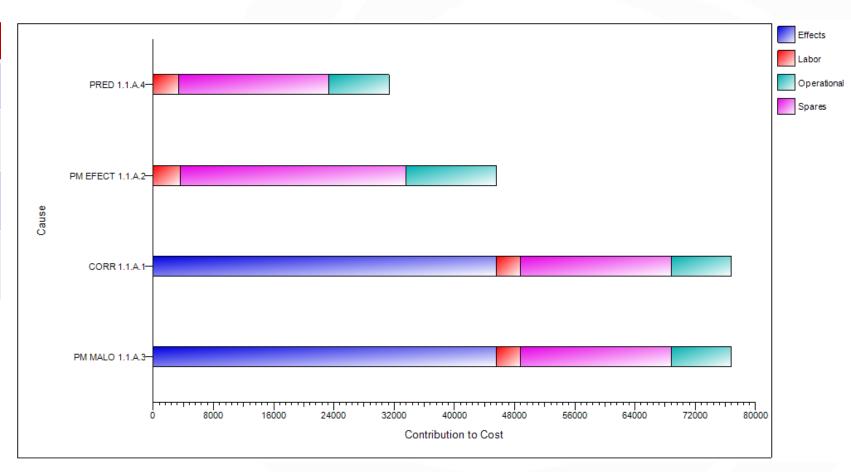
- Numero de reemplazos:
 - MTBF = 2500 horas
 - Tarea PdM @ 500 horas con
 - PF = 750 horas
 - Atraparemos las fallas @ 2000 horas
 - Entonces 10,000 horas / 2000
 horas = 5 reemplazos

- Numero de PdM's:
 - 10,000 horas/500 horas = 20
 PdM's
 - Costo de falla para un CbM efectivo = cero
- Costo Total = Reemplazo + Costo
 PdM
 - 5 x \$7,600/reemplazo + 20 PdM's
 [0.5 horas x \$100/hora]
 - Costo Total = \$39,000

Discusión Mantenimiento Predictivo

• El Mantenimiento Predictivo puede reducir los costos de mantenimiento mas allá, al permitir a los activos alcanzar el desgaste fuera de la curva y ser mantenidos antes de la falla.

Sensibilidad:


- PdM esta restringido por las tecnologías o la capacidad humana de percibir señales de una falla inminente
- No todas las Tareas Preventivas pueden ser reemplazadas por una Inspección
- No todos los Modos de Falla son mejor mitigados con una Tarea Preventiva
- Los intervalos P-F deben ser suficientemente largos para ser rentable y permitir a las Inspecciones identificar fallos prematuros

Resumen – Tareas de Mantenimiento

Estrategia	Costo Total
Correctiva (CM)	\$76,800
Preventiva (PM) Efectiva (1650 hr)	\$45,600
Preventiva (PM) Inefectiva (4900 hr)	\$76,800
Predictivo (PdM)	\$39,000

Santiago Sotuyo Blanco

Ingeniero Principal de Confiabilidad - Latino América ARMS Reliability santiago.sotuyo@bakerhughes.com

SI TIENES PREGUNTAS O COMENTARIOS

¡No dudes en acercarte!

iGRACIAS!

Presentado por:

Ing. Ind. Santiago Sotuyo Blanco, CMRP, CRL, AMP-S santiago.sotuyo@bakerhughes.com