SESSION

TOOLBOX

Practical workshop with tools to improve the reliability of your plant.

The Toolbox Session is a workshop where you will learn practical and useful knowledge that will serve you in your work at the plant. The speaker explains the objective of the tool to be learned and facilitates the learning process through examples and exercises.

Additionally, tools, templates, spreadsheets, and tips are provided so you can acquire the skills that will improve your performance on a day-to-day basis.

Break out of the Budget Jail

Torbjörn Idhammar

President, IDCON INC

Industries Worked In

• Wood, Building Products

DCO

- Steel and Metals
- Pharmaceutical
- Power Plants
- Mining
- Food
- Chemical
- Oil and Gas
- Pulp and Paper
- Manufacturing

IDCON INC – International Presence

CONGRESO DE MANTENIMIENTO & CONFIABILIDAD M É X I C O

Areas of Expertise

Reliability & Maintenance for the Process Industry

- Advice
- Leadership Organization
- Reliability Assessments
- Planning & Scheduling
- Shutdown/ Turnaround
- Preventive Maintenance
- Operator Essential Care
- Root Cause Problem Elimination
- Spare Parts Management
- Technical Database

In Plants, Mills & Mines

Additional Free Resources

Article Library 200+

Friendly reminders of new content

ABOUT

DIDCUSTION

THORNELS:

IDCON YouTube

IDCON Reliability and Maintenance

PLANUSTS.

Do Top Managers Want Reliability?

Wrong Turn: Cut Cost; No Other Improvements

Right Strategy: Focus on Reliability and Cost will Follow

Delay Effect in Maintenance

- Misalign 6 thou life ... 3-4 years
- Misalign 2 thou full life ... 15 years

Case Study: Reduce Maintenance People

Case Study: Reduce Maintenance People – The Rest of the Story

The Typical Request (Reduce the Budget)

Three Ways to Reduce Cost

2 and 3 Take Time (Years)

We are stuck with option 1, unless someone is willing to invest long term.

But can't we improve quickly by reducing backlog?

Implementation Plan: Where do we focus time?

The Typical Request

Increase Reliability

One is an outcome of the other

If you truly believe you would fix jobs in priority order...

The Mountain: Move from React to Prevent to Continuous Improvement

CONGRESODE MANTENIMIENTO & CONFIABILIDAD M É X I C 0

Consideration: The "Maintenance Debt"

Similar plants, different (maintenance) history...

The Important Questions

How much reliability? By when? Future annual cost (budget) in the future What is the investment to improve reliability

Which Cost

Maintenance Cost? Maintenance Cost per Unit? Total Cost per Unit? Total Cost?

Business Case Reliability: Uptime Focus (Example)

Sales Price = US\$600/ton <u>Variable Cost = US\$333/ton</u> Contribution to fixed Cost = US\$267/ton

Total annual production forecast = 330,000 tons 1% increase through reliability = 3,300 tons

1% reliability is "worth" 3,300 x 267 = US\$888,000 per each additional percent [%] annually

Business Case for Improvement (Example)

Business Case Benefits 18–24 months							
Improvement Area	Current Performance	Target Performance	Performance Opportunity Gap	Potential Benefit Savings \$ Million USD/yr			
Throughput Improvement							
1-1.5% Reliability	90% 83%	90% (Lines)	1-1.5%	\$0.88M – \$1.32M			
Planning, Scheduling, Execution Efficiency							
Planning and Scheduling	25%	60%	35%	1.85M			
Maintenance hrs/ton	0.50	0.41	0.09	See above			
			Total	\$2.7M-\$3.2M			

Business Case for Improvement (Example)

- OT = 18.5%
- Total Maintenance hours = Own+ OT + Contract = 191,880
- Planning and scheduling level estimated to 25%
- Assumption: We waste at least 50% of work time when work is unplanned and unscheduled
- 75% unplanned and unscheduled

Now: 75% * 50% * 191,880 = 71,955 hrs. wasted Future: 40% * 50% * 191,880 = 38,376 hrs. wasted

Difference: 33,579 hrs. saved from improving P&S OT & Contractors: \$55/hour = \$55 x 33,579 = US\$1.85 M/year

Ten Years' Effect of Two Years Cost Cutting Focus Scandinavian Chemical Factory

Fonterra

Reliability Focus at Fonterra – Edgecumbe (10 years) CBP Score 78

Ten Years' Effect of Reliability Improvements Focus

Ten Years' Effect of Reliability Improvement Focus

Compare 2 Work Orders: Reactive vs. Proactive

Planned Repair (CBM)		Unplanned Repair (OTB)		Comments
Work Order 37309		Work Order 44699		
Price of Component	\$124,000.00	Price of Component	\$189,755.00	Repair and Return vs. Exchange cost
Additional repair cost	\$0.00	Additional repair cost	\$32,555.70	Additional damage from failure
Hot Shots	0	Hot Shots	3	
Cost of Hotshots	0	Cost of Hotshots	\$750.00	
R&R Gearcase - Labor Hrs.	68.5	R&R Gearcase - Labor Hrs.	101.5	
Maint Labor Cost	\$1,678.25	Maint Labor Cost	\$2,486.75	
Down Time	0	Down Time	4.58 hrs.	Lost production to swap out miners
Cost of Down Time	\$0.00	Cost of Down Time	\$85,091.82	
Total Cost of Repair	\$125,678.25	Total Cost of Repair	\$310,639.27	

Business Case 4: Reliability Focus using DuPont Model

Business Case 4: Reliability Focus using DuPont Model (cont.)

Business Case 4: Reliability Focus using DuPont Model (cont.)

Business Case 4: Increase Reliability 6% from 88% to 94%

Increase Reliability 6% from 88% to 94% and Market Price Increase 10%

THANK YOU!

Tor Idhammar

t.idhammar@idcon.com