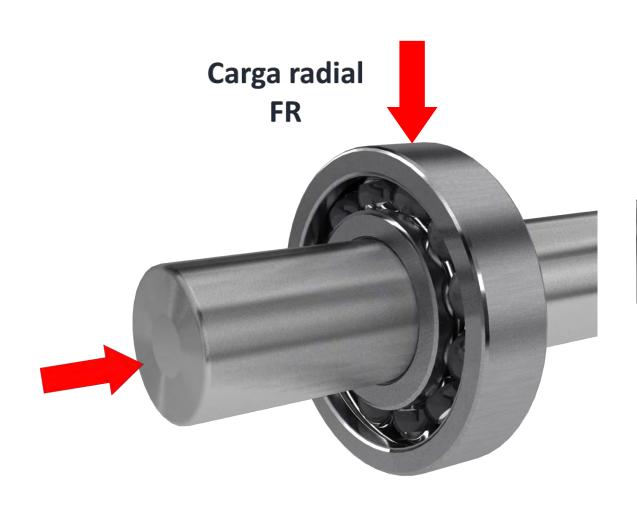
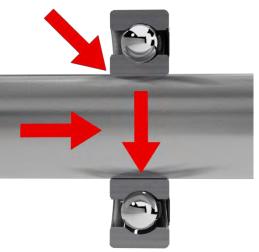


¿ CÓMO ELIMINAR 6 MODOS DE FALLAS EN RODAMIENTOS?

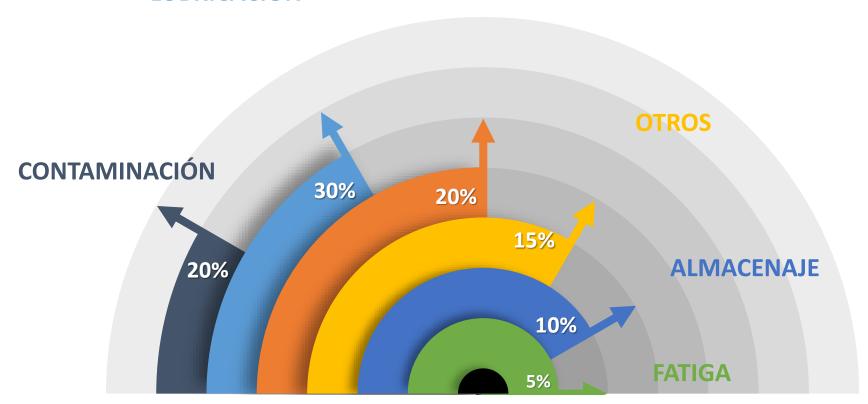
ALEJANDRO PÉREZ/IME

Director General MTF

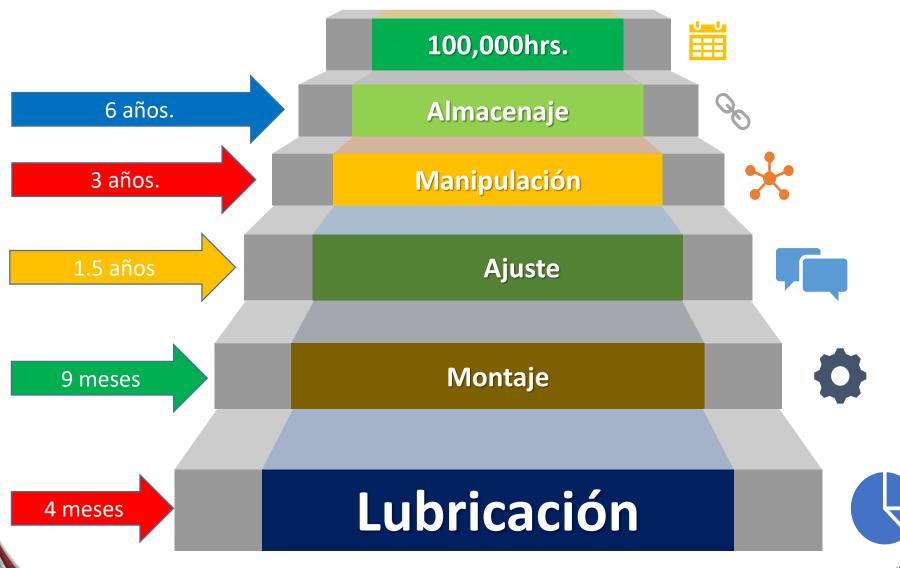


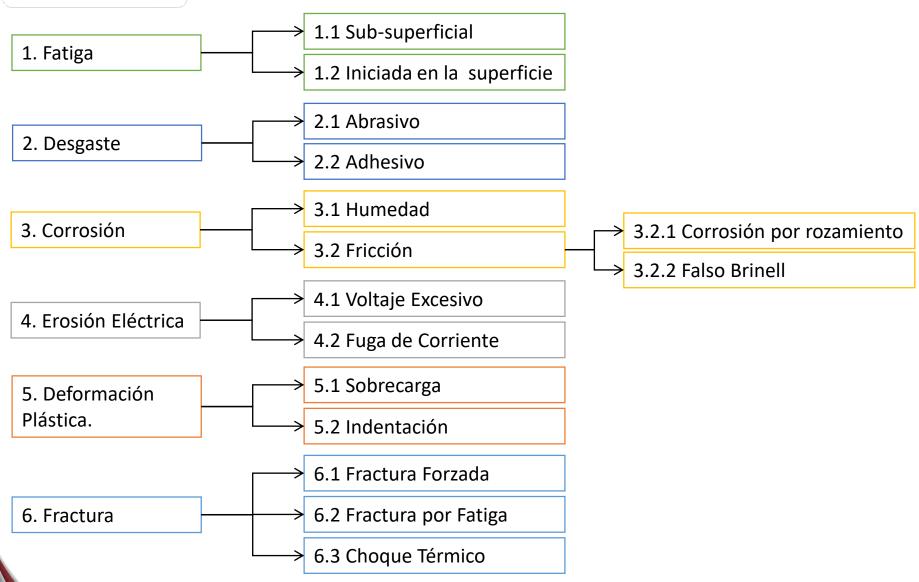

EL RODAMIENTO ES UNA PIEZA DE PRECISIÓN Y DEBE SER TRATADO COMO TAL

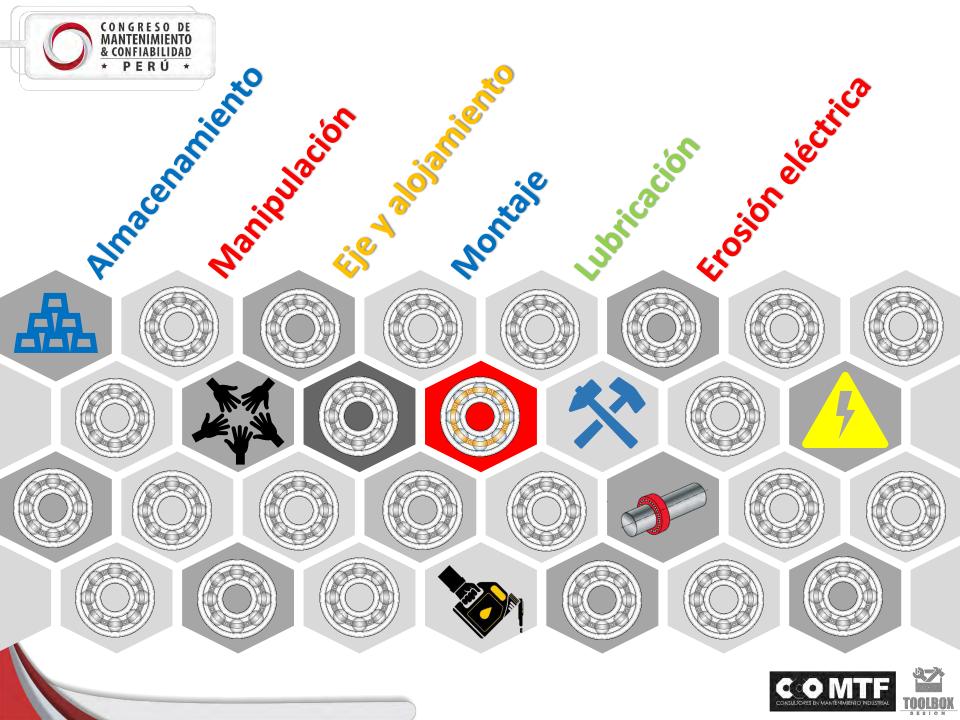
Cargas combinadas



MONTAJE

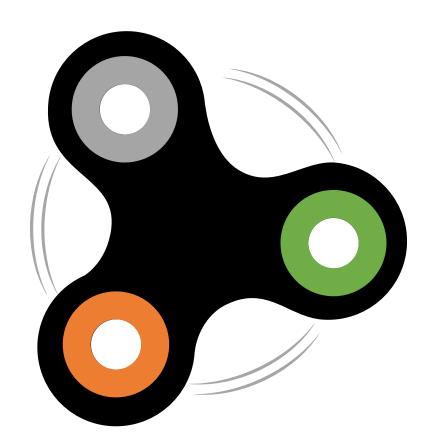

LUBRICACIÓN


ISO 281



ISO 15243:2017

ALMACENAMIENTO


Físico

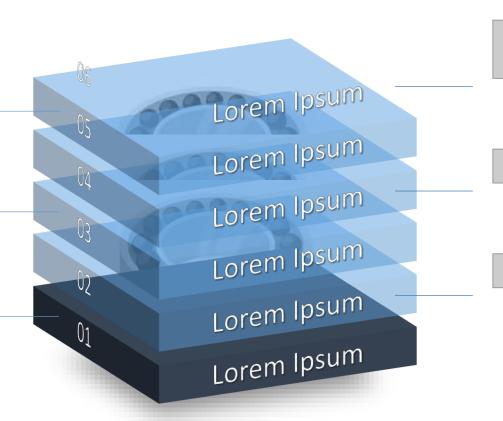
Datos de placa Lo instalado OEM

CMMS

Designación completa Número comercial Actualizado

Almacén

Obsoletos Abiertos Aislados Limpios FiFo



1.-almacenamiento

FIFO

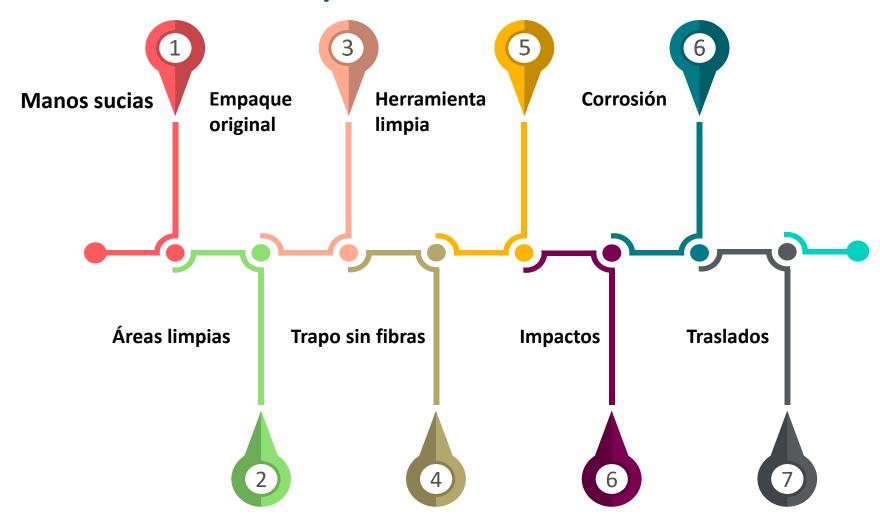
EMPAQUE ORIGINAL

LIBRE DE VIBRACIONES

20 CM. SUELO

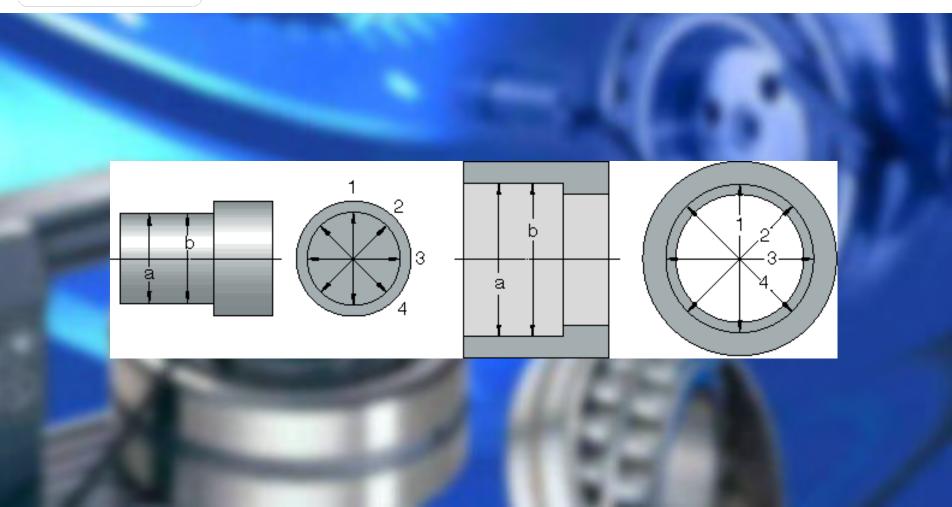
SUPERFICIE PLANA

1.-almacenamiento



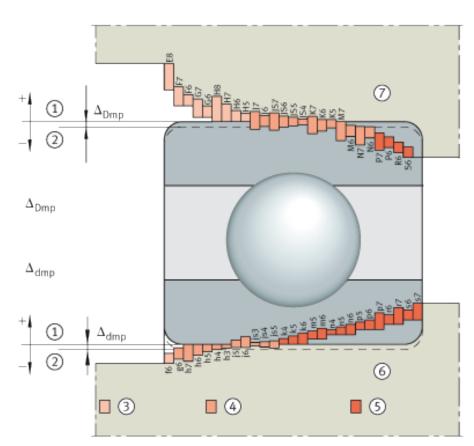
2.-Manipulación

2.-Manipulación

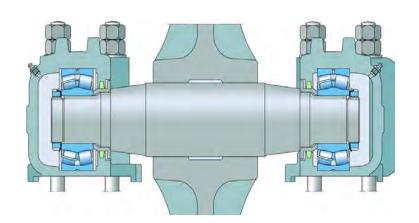


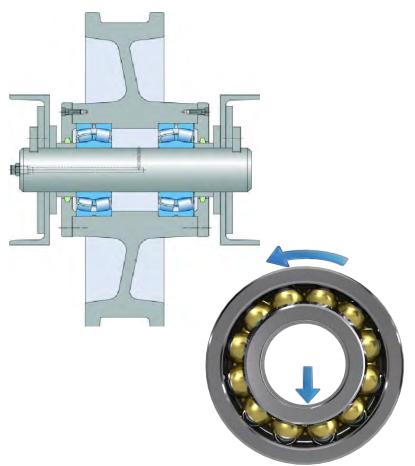
Selección del ajuste adecuado

- Ajuste excesivamente flojo
 - Permite movimiento relativo entre eje y rodamiento
 - Resultado
 - Alta temperatura
 - Desgaste
 - Erosión
 - Fracturas
- Ajuste excesivamente fuerte
 - Reducción del juego radial interno del rodamiento
 - Resultado
 - Incrementa la temperatura de operación
 - Fractura
 - Dificultad en el montaje

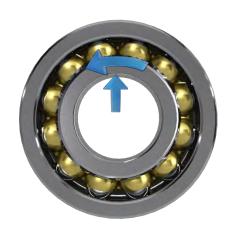


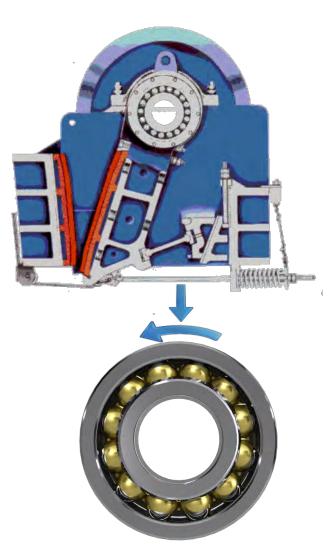
Criterios de selección del ajuste (fijación radial)

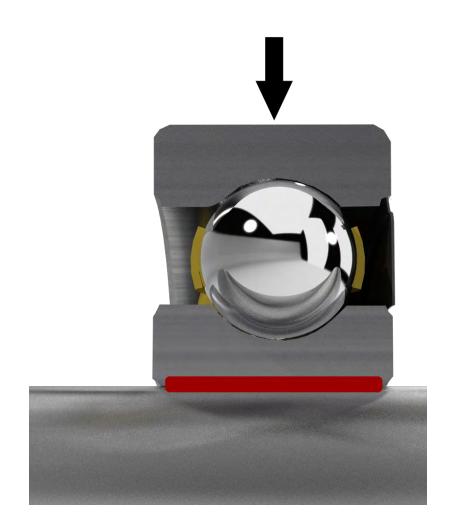

- Condiciones de giro
- Magnitud de la carga
- Juego interno del rodamiento
- Condiciones de temperatura
- Exigencias respecto a la exactitud de giro
- Diseño y material de los ejes y alojamientos
- Facilidad de montaje y desmontaje
- Desplazamiento de un rodamiento libre

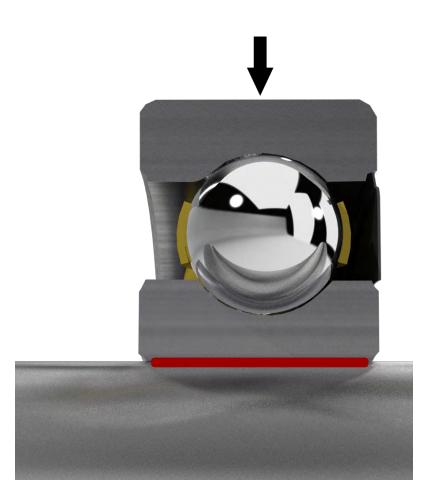


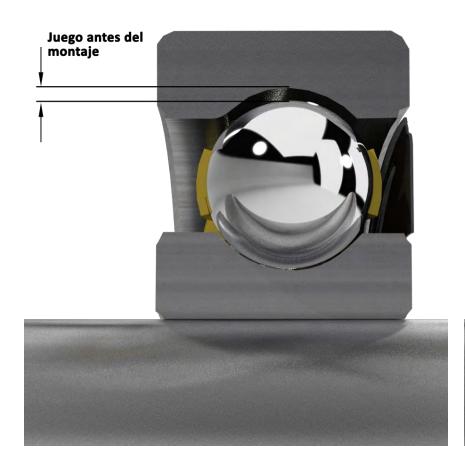
En aro interior


En aro exterior



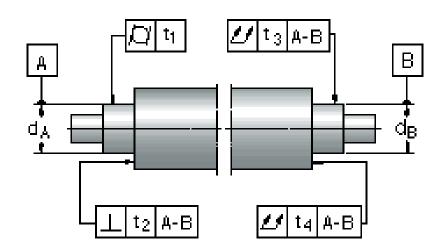


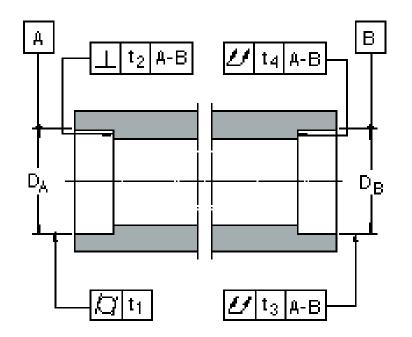




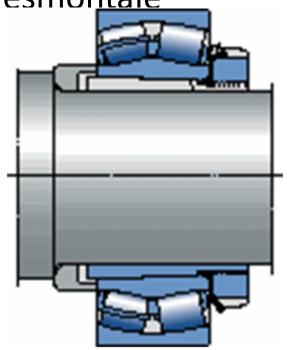


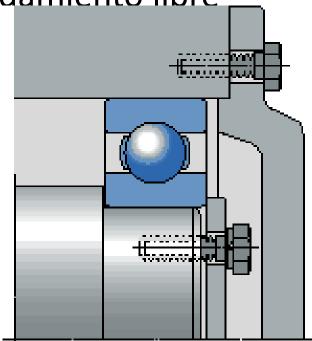
Reducción del juego radial



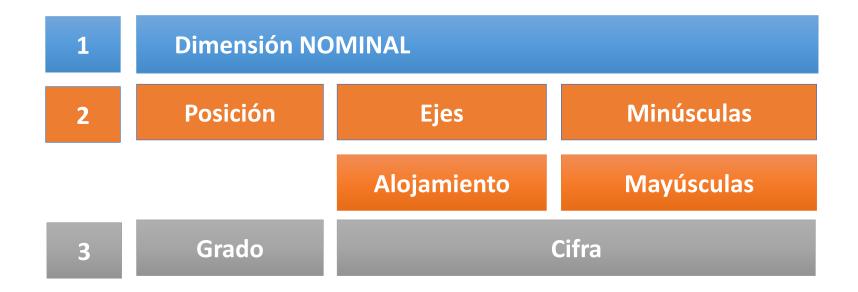

Compresión

Expansión

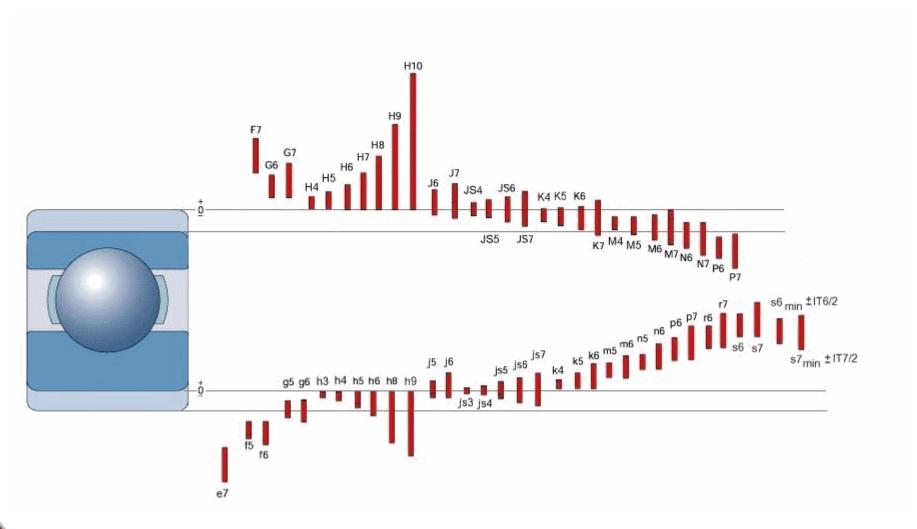




• Facilidad en el montaje y desmontaie

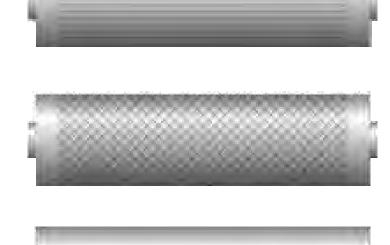


Desplazamiento de un rodamiento libre ___



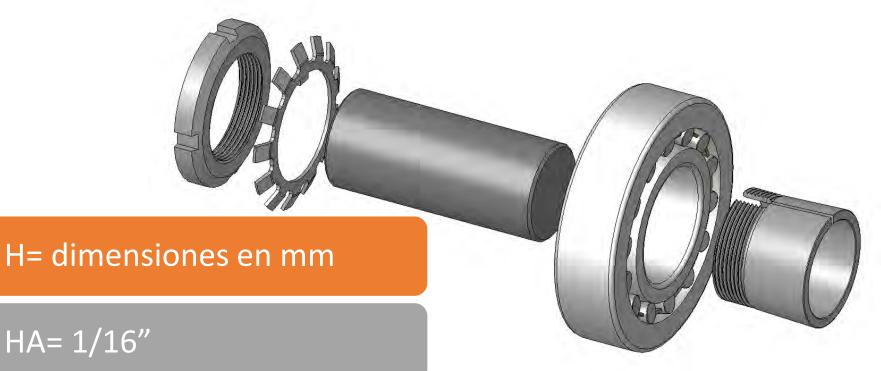
Ejemplos:

Ø 100 r6 Ø 45 M7 Ø 100 h9/IT5



- Utilizar pegamento
- Picotear el eje
- Moleteado

- Metalizado
- Rellenado
- Epóxico
- En caso de emergencia:
 - Soldar y rellenar
- La reparación mas efectiva es el remaquinado

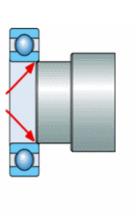


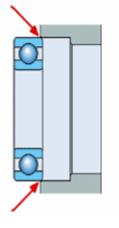
3.-Ajuste

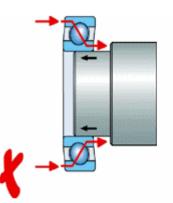
HA= 1/16"

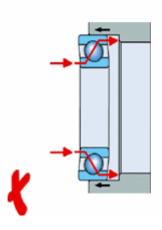
HE= 1/4", 1/2", 1"

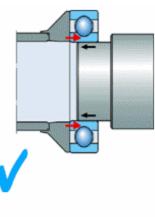
HS= 1/8"

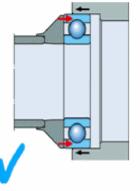


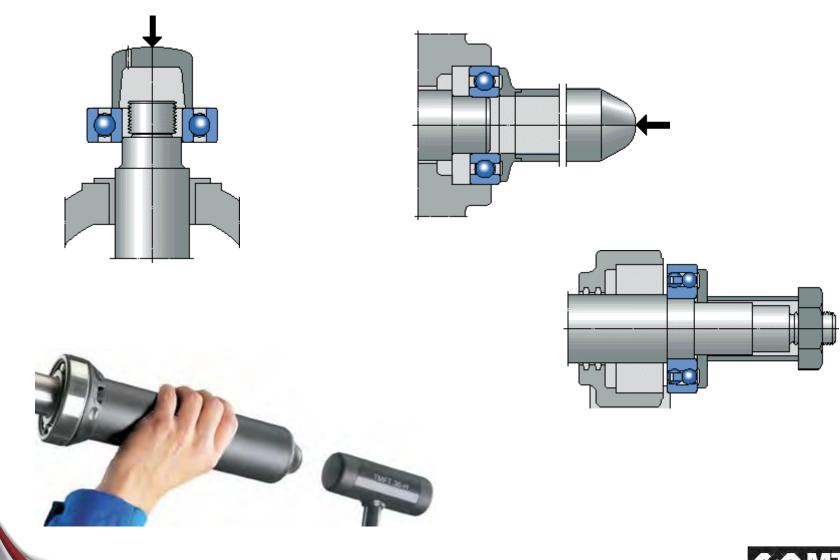

4.-Montaje

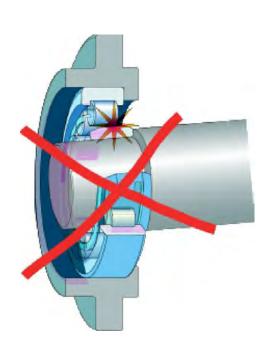


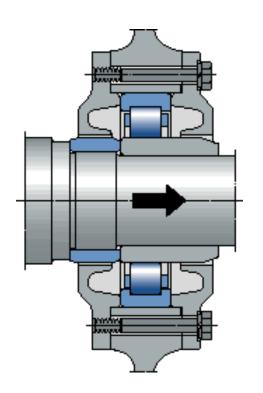


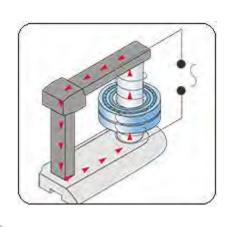












Montaje (agujero cilíndrico, montaje

en caliente)

Placa eléctrica

- Ventaja:
 - Control de temperatura
 - Lo mejor para grandes cantidades de rodamientos pequeños
- Desventajas:
 - Largo tiempo de espera

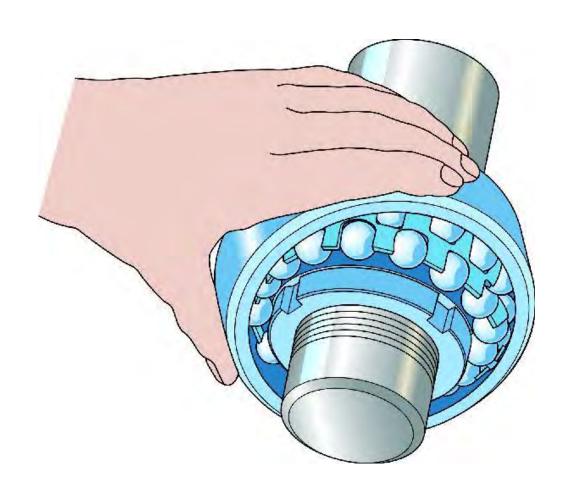
Hornos

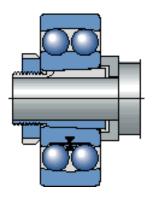
- Ventajas:
 - Control de temperatura, limpieza, calentamiento uniforme
- Desventajas:
 - Costo
 - Tiempo de espera

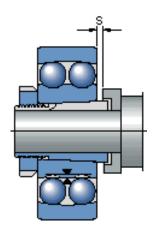
- Baño de aceite**
 - Ventajas:
 - Calentamiento uniforme
 - Desventajas:
 - Sucio
 - Contaminación del rodamiento
 - Largo tiempo de espera
 - Riesgo para la salud
 - Riesgo de incendio

** Asegurarse que el aceite a utilizar tenga un punto de inflamación mayor a los 250°C (480°F)

Soplete

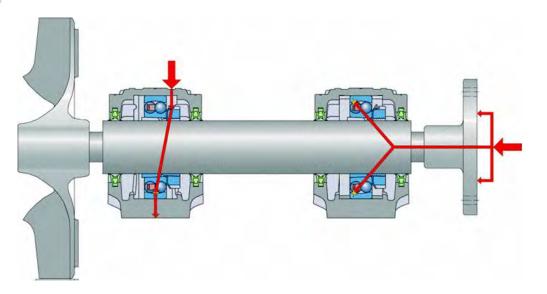

- Ventajas
 - Velocidad
- Desventajas
 - Riesgo potencial de daño a rodamiento y eje (Los fabricantes de rodamientos venden más rodamientos)
 - Calentamiento no uniforme
 - Sin control de temperatura
 - Riesgo de incendio
 - Riesgo para la salud

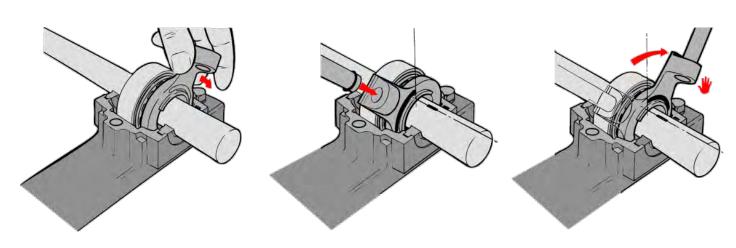


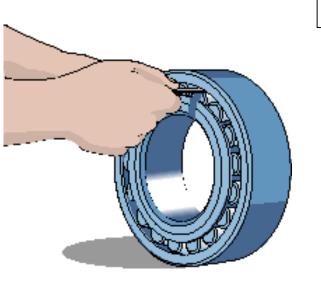

Ángulo de apriete y calado axial

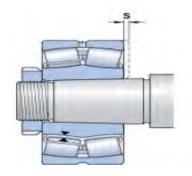
Agujero Ángulo Calado del rodamiento de aprietes¹⁾ axial diámetro

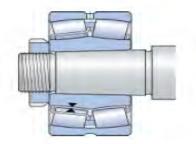
d	α	S
mm	grados	mm
20	80	0,22
25	55	0,22
30	55	0,22
35	70	0,30
40	70	0,30
45	80	0,35
50	80	0,35
55	75	0,40
60	75	0,40
65	80	0,40
70	80	0,40
75	85	0,45
80	85	0,45
85	110	0,60
90	110	0,60
95	110	0,60
100	110	0,60
110	125	0,70
120	125	0,70

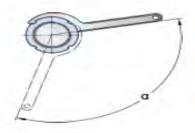


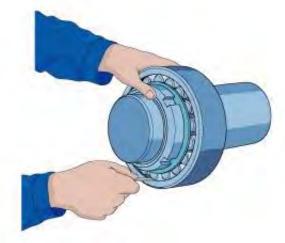


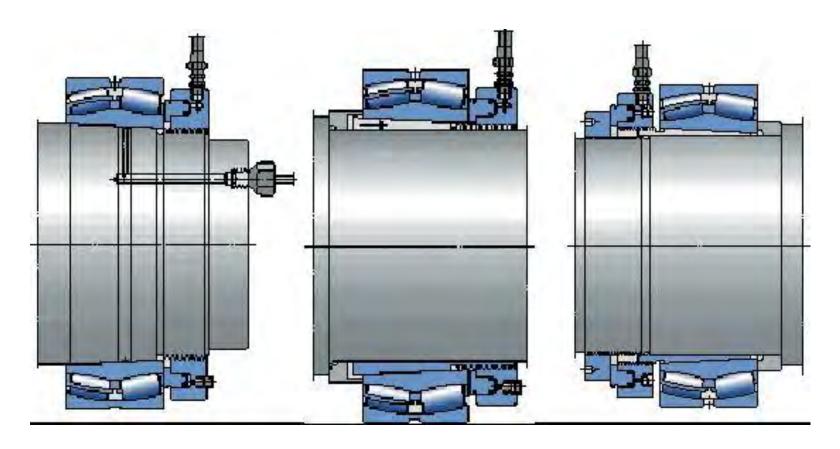





Diámetro agujero	del	Juego	radial ir	nterno							
d		C2		Norma	al	C3		C4		C5	
más de	incl.	mín	máx	mín	máx	mín	máx	mín	máx	mín	máx
mm		μm									
24	30	20	30	30	40	40	55	55	75	-	-
30	40	25	35	35	50	50	65	65	85	85	105
40	50	30	45	45	60	60	80	80	100	100	130
50	65	40	55	55	75	75	95	95	120	120	160
65	80	50	70	70	95	95	120	120	150	150	200
80	100	55	80	80	110	110	140	140	180	180	230
100	120	65	100	100	135	135	170	170	220	220	280
120	140	80	120	120	160	160	200	200	260	260	330
140	160	90	130	130	180	180	230	230	300	300	380
160	180	100	140	140	200	200	260	260	340	340	430
180	200	110	160	160	220	220	290	290	370	370	470
200	225	120	180	180	250	250	320	320	410	410	520







Diámetro d	del agujero	Reducció juego rad	on del dial interno	Calado s	axial ¹⁾²⁾			Ángulo de apriete de la tuerca de fijación ²⁾	
				Conicio 1:12	dad de	Conicio 1:30	dad de	Conic	cidad de 1:12
>	≤	min.	máx.	min.	máx.	mín.	máx.		
mm		mm		mm				9	
24	30	0,010	0,015	0,25	0,29	-	9	100	La aplicación de los
30	40	0,015	0,020	0,30	0,35	-	320	115	valores recomendados impide el deslizamiento del aro interior,
40	50	0,020	0,025	0,37	0,44	-	-	130	pero no garantiza que el iuego radial interno sea correcto durante el
50	65	0,025	0,035	0,45	0,54	1,15	1,35	115	funcionamiento. Se deben evaluar
55	80	0,035	0,040	0,55	0,65	1,40	1,65	130	cuidadosamente otras influencias del ajuste del soporte del rodamiento
30	100	0,040	0,050	0,66	0,79	1,65	2,00	150	y las diferencias de temperatura entre el aro interior y el exterior
100	120	0,050	0,060	0,79	0,95	2,00	2,35		cuando se seleccione
120	140	0,060	0,075	0,93	1,10	2,30	2,80		la clase de juego radial interno
140	160	0,070	0,085	1,05	1,30	2,65	3,20		del rodamiento (Selección del juego interno o la precarga).

Eje cónico

Manguito montaje

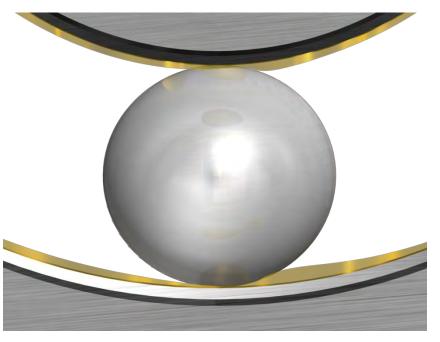
Manguito desmontaje

Función del lubricante

Separar las superficies de rodadura

- eliminar el desgaste
- reducir la fricción

Proteger al rodamiento


- de la corrosión
- de la contaminación

El desempeño del lubricante

- Los elementos rodantes corren en una delgada capa de lubricante
- No hay contacto metalmetal
- La película de lubricación mide 1/100 del espesor de una hoja de papel y soporta el equivalente a la presión que ejercen 10 autos en una uña

Viscosidad - definición

Resistencia a fluir de un liquido

- Es la propiedad más importante de los lubricantes (nuevos y en uso)
- La viscosidad es afectada por:
 - Temperatura
 - Presión
 - Esfuerzo de corte y relación de corte
 - Contaminación
 - Degradación
- Baja viscosidad (Agua 1cSt@20°C)
- Alta viscosidad (Miel 1200cSt@20°C

Baja Viscosidad + menor fricción

- Capa lubricante delgada

Alta Viscosidad

- + Capa de lubricante gruesa
- Mayor fricción

Aceite base

65 – 98%

Aditivos

Espesante

0 - 10%

2 – 25%

Seleccione la consistencia

Revise si son necesarios los aditivos EP o los lubricantes sólidos

Seleccione las propiedades adicionales de la grasa

Seleccione la viscosidad del aceite base

¿Cuánta grasa debe llevar la cavidad del rodamiento y cuánta el rodamiento?

- En promedio, los rodamientos nuevos llevan un 30% de grasa en su interior (en rodamientos de altas revoluciones la cantidad puede ser de un 20%)
- La cavidad donde se monta el rodamiento nunca debe llenarse por completo ya que esto bloquearía la salida del exceso de grasa en el rodamiento: 100% la cavidad interior, 60% la cavidad exterior
- Rodamientos con sellos o escudos:
 - Llenado normal = 25-35%
 - Solicite mayor llenado (grado 7 o 9) si se requiere protección contra la corrosión si se el rodamiento trabaja a baja velocidad
 - Solicite menor llenado (grado 1) si el rodamiento opera a muy alta velocidad.

Q = (0.005)(D)(B)

Q = cantidad de grasa (g)

D = diámetro externo del rodamiento (mm)

B = ancho del rodamiento (mm)

Ajustes a la fórmula por FAG:

Q=0.002(D*B)

Cantidad de re-engrase para periodos semanales

Q=0.003(D*B)

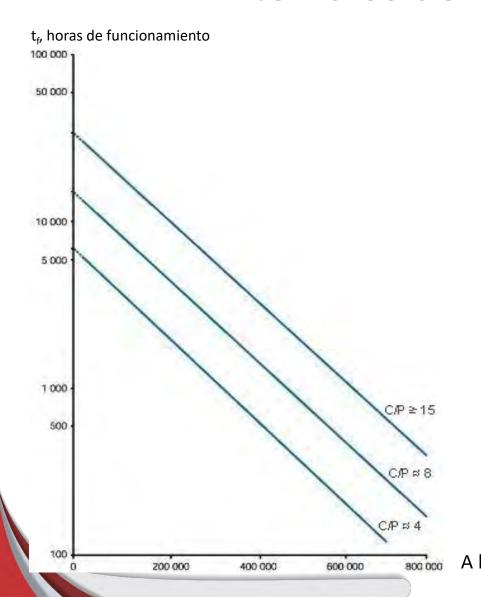
Cantidad de re-engrase para periodos mensuales

Q=0.004(D*B)

Cantidad de re-engrase para periodos anuales

Q = (0.114)(D)(B)

Q = cantidad de grasa (oz)


D = diámetro externo del rodamiento (in)

B = ancho del rodamiento (in)

Intervalos de re-lubricación

- 1. Calcule el valor Ab_f
- 2. Encuentre el valor Ab_f en el eje de las X y suba hasta localizar la línea correspondiente a la relación (C/P) de operación del rodamiento
- 3. Trazar una línea perpendicular al eje de las Y en el punto de cruce para localizar las horas de funcionamiento para relubricar el rodamiento
- A= NDm
- B_f=Factor para el rodamiento que depende del tipo de rodamiento y de las condiciones de carga.
- Valido para temperatura de operación de 70°C
- Reducir a la mitad el intervalo por cada 15°C arriba de la temperatura base
- Para aplicaciones en orientación vertical se recomienda reducir a la mitad el intervalo calculado.

Uso de la fórmula para calcular el intervalo de re-lubricación

T = K x
$$\left[\left(\frac{14,000,000}{n \times (d^{0.5})} \right) - 4 \times d \right]$$

En donde:

T = Tiempo hasta la siguiente re-lubricación (horas)

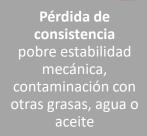
K = Producto de todos los factores de corrección Ft x Fc x Fm x Fv x Fp x Fd (vea la tabla)

n = Velocidad (rpm)

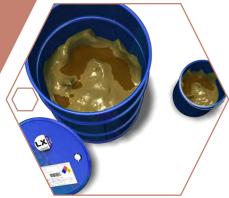
d = Diámetro interior (mm)

Nota:

ips = pulgadas / segundo 0.2 pulgs. / segundo = 5 mm/seg.


Factores de Corrección del Intervalo de Engrase

Condición	Rango de Operación Promedio	Factor de Corrección		
Temperatura Ft	Carcaza por debajo de 65°C 65 a 80°C 80 a 93°C	1.0 0.5 0.2		
	Arriba de 93°C	0.1		
Contaminación	Ligero, polvo no abrasivo	1.0		
Fc	Severo, polvo no abrasivo	0.7		
	Ligero, polvo abrasivo	0.4		
	Severo, polvo abrasivo	0.2		
Humedad	Humedad por debajo del 80%	1.0		
Fm	Humedad entre 80 y 90%	0.7		
	Condensación ocasional	0.4		
	Agua ocasionalmente en la carcaza	0.1		
Vibración	Velocidad pico menor a 0.2 ips	1.0		
Fv	0.2 a 0.4 ips	0.6		
	Arriba de 0.4 ips	0.3		
Posición	Horizontal	1.0		
Fp	45 grados	0.5		
- 10	Vertical	0.3		
Diseño del	Rodamiento de bolas	10		
Rodamiento	Rodamientos cilíndricos y de agujas	100 (50)		
Fd	Rodamientos cónicos y esféricos	1.0		


La vida de la grasa puede ser larga...
Pero no infinita

Contaminación con partículas sólidas durante almacenaje o en operación

Endurecimiento / degradación oxidación o pérdida de aceite, contaminación con otras grasas, sangrado.

Compatibilidad entre los espesantes

Interpretación: Compatible Compatible Límite Incompatible ND No Disponible	Aluminio Complejo	Bario	Calcio	Calcio 12-Hidroxi	Calcio Complejo	Bentona	Litio	Litio 12-Hidroxi	Litio Complejo	Poliurea*	Sodio	Sulfonato de Calcio	Dióxido de Silicio
Aluminio Complejo				0					0				0
Bario				0									0
Calcio				0		0	0		0			N/D	N/D
Calcio 12-Hidroxi	0	0	0			0	0	0	0			N/D	N/D
Calcio Complejo									0	0		0	
Bentona			0	0									0
Litio			0	0				0	0			0	0
Litio 12-Hidroxi				0			0		0			0	N/D
Litio Complejo	0		0	0	0		0	0				0	0
Poliurea*					0					*			
Sodio													
Sulfonato de Calcio		A	N/D	N/D	0		0	0	0				N/D
Dióxido de Silicio	0	0	N/D	N/D		0	0	N/D	0			N/D	

[★] No todas las grasas de poliurea son mutuamente compatibles

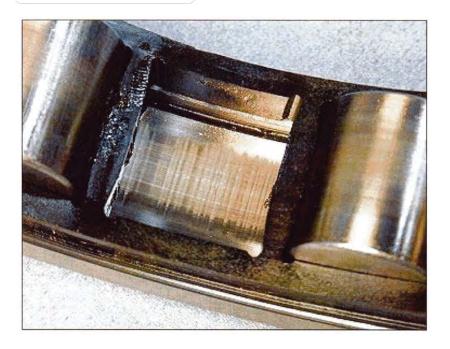
En caso de duda, asuma que grasas diferentes son incompatibles

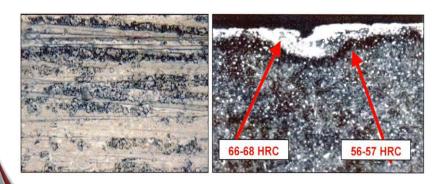
TEMPERATURA							
В	Baja	<50°C					
М	Media	50 a 100°C					
А	Alta	>100°C					
EA	Ext. Alta	>150°C					

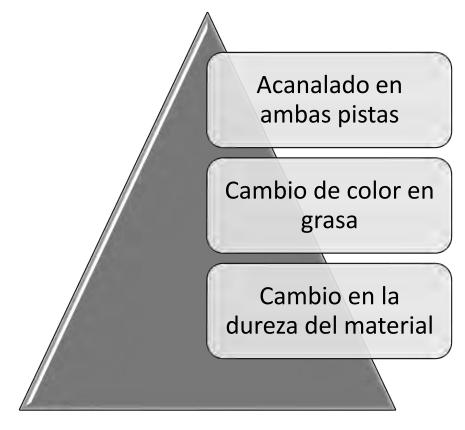
CARGA						
MA	Muy Alta	C/P<2				
Α	Alta	C/P= 4				
М	Media	C/P= 8				
В	Ваја	C/P>15				

		VELOCIDAD	
		Rodamientos de bolas NDm	Rodamientos de rodillos NDm
EA	Extremadamente alta	Arriba de 700,000	-
MA	Muy Alta	Hasta 700,000	-
А	Alta	Hasta 500,000	Arriba de 270,000
M	Media	Hasta 300,000	Hasta 270,000
В	Ваја	Por debajo de 100,000	Por debajo de 30,000

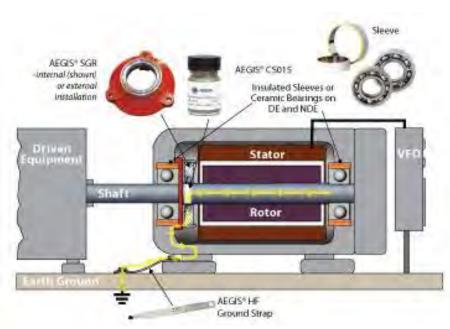
Baja intensidad de corriente


Indentaciones


Desarrollo de acanaladuras en pista de rodadura


Descoloración gris-oscura

Costo de la falla


Falla en motor	30HP (22.5KW)	300HP (225KW)	500HP (375KW)
Desmontaje e instalación	\$500.00	\$2,000.00	\$5,000.00
Reparación	\$1,500.00	\$8,400.00	\$20,200.00
Costo Paro de producción	\$5,000.00	\$10,000.00	\$100,000.00
Costo total por falla de motor	\$7,000.00	\$20,400.00	\$125,200.00
Costo de soluciones	\$900.00	\$1,740.00	\$4,680.00
Ahorro al prevenir falla	\$6,100.00	\$18,660.00	\$120,520.00

Soluciones

CONCLUSIONES

- LA GRAN MAYORIA DE LAS FALLAS SE PUEDEN PREVENIR
- ACTUAR PROACTIVAMENTE
- NO TIRAR EVIDENCIA
- ESTRATEGIA ADECUADA (HERRAMIENTA/TÉCNICA/LUBRICACIÓN Y MONITOREO)
- CAPACITAR AL PERSONAL
- REVISAR INSTRUCTIVOS
- CONGRUENCIA DE LA INFORMACIÓN

EL RODAMIENTO ES UNA PIEZA DE PRECISIÓN Y DEBE SER TRATADO COMO TAL

ALEJANDRO PÉREZ

APEREZ@MTFRODAMIENTOS.COM

SITIENES
DUDAS O COMENTARIOS
No dudes en acercarte!