

Gerardo Trujillo

Director Noria Latin América

Estrategia de monitoreo de condiciones con base en ISO 17359

PREDICTIVO \(\neq\) MONITOREO DE CONDICIÓN

PLANEADO

Reparar antes de que falle Enfoque en prevención

MONITOREO DE CONDICIÓN

Evitar la falla Enfoque en la vida del componente

REACTIVO

Reparar – Enfoque en costo

PREDICTIVO

Predecir la Falla Enfoque en Producción.

4.0

Austar la condición Enfoque en optimización y gestión de activos.

Objetivos del Monitoreo de condición

MEDICIÓN

Mediciones selectas para identificar cambios en las condiciones de operación.

ADVERTENCIA

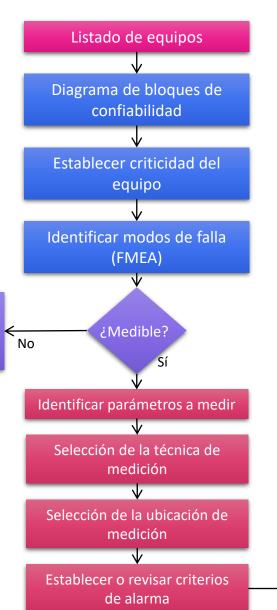
Indica señales tempranas de una falla potencial

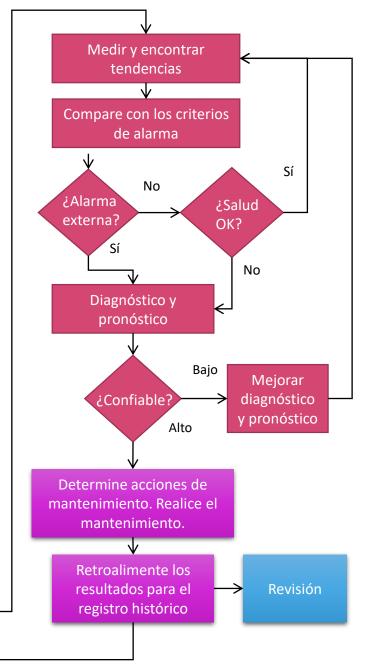
INFORMACIÓN

Proporciona información acerca de la naturaleza de la falla

GESTIÓN

Permite gestionar la falla y las acciones requeridas para control o reparación




Use mantenimiento correctivo, preventivo

o rediseño

ISO 17359:2008 – Diagrama de flujo del procedimiento de

monitoreo de condición

ISO 17359 - Guía general para monitoreo de condición y diagnóstico de maquinaria

ACCIONES

CRITICIDAD - La estrategia dirigida a las máquinas que realmente importan

		FACTOR DE CRITICIDAD DE LA MAQUINA									
		1	2	3	4	5	6	7	8	9	10
LA	1	1	2	3	4	(5)	6	7	8	9	10
FAL	2	2	4	6	ő	10	12	14	16	18	20
7 E	3	3	6	9	12	15	18	21	24	27	30
NC!	4	4	8	12	16	20	24	28	32	36	40
HH :	5	5	10	15	20	25	30	35	40	45	50
30	6	6	12	18	24	30	36	42	48	54	60
= = ·	7	7	14	21	23	35	42	49	56	63	70
FACTOR DE OCURRENCIA DE FALLA	8	8	16	24	32	(40)	48	56	64	72	80
F	9	9	18	27	36	45	54	63	72	81	90
1	0	10	20	30	40	50	60	70	80	90	100

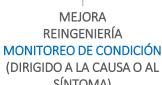
Análisis de modos de falla (AMEF)

Equipo y función

Localizar causas potenciales y su PROBABILIDAD

CAUSAS

Identificar los controles para detectar su DETECCIÓN



PROBABILIDAD X DETECCIÓN

Seleccionar la estrategia para disminuir el RIESGO

Ejemplo de AMEF — Sistema hidráulico

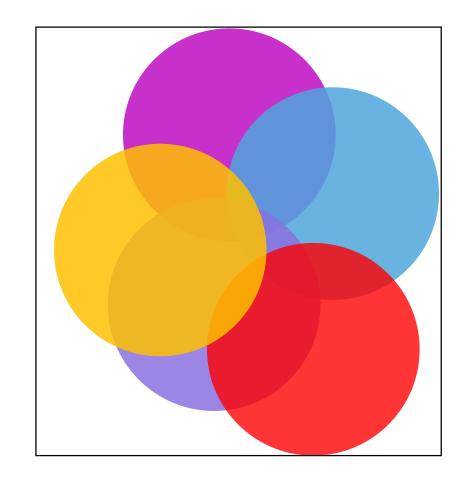
P M Falla	P Efectos	S	Causas P	0	Control	D	RPN
Rodamientos	Paro del molino	8	Falta aceite	4	Inspección de ojo buey	8	256
		8	Aceite contaminado partículas	7	Cambio de aceite	10	560
		8	Aceite contaminado con agua	4	Inspección de ojo buey	8	256
		8	Desalineamiento con motor	4	Inspección visual	8	256
		8	Soportes sueltos	4	Inspección visual	8	256
		8	Fin de vida útil	8	Inspección auditiva	9	576

RPN máximo = 192

Ejemplo de AMEF – Sistema hidráulico

RPN	Causa	Acciones	Estrategia	New S	New O	New D	New RPN
256	Falta aceite	Sensor de nivel conectado Monitoreo En-línea alarma		8	4	2	64
		Falta de película	Análisis de vibraciones				
560	Aceite contaminado partículas	Conteo de partículas	Análisis de lubricante	8	7	3	168
256	Aceite contaminado con agua	Análisis de humedad	Análisis de lubricante	8	4	3	96
256	Desalineamiento con motor	Verificar Alineamiento	Análisis de vibraciones	8	4	3	96
256	Soportes sueltos	Pata floja	Análisis de vibraciones	8	4	3	96
576	Fin de vida útil	Análisis de partículas de desgaste Análisis de lubri		8	8	2	128
		Desgaste de rodamiento	Análisis de vibraciones				

RPN máximo = 192

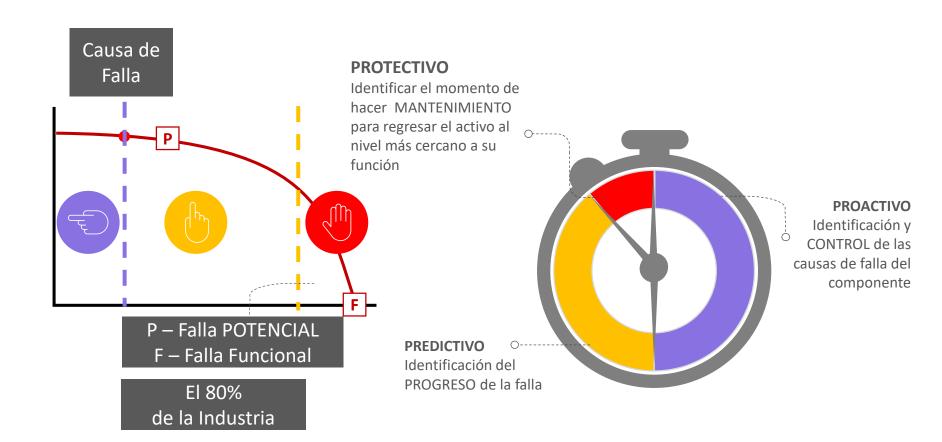


Definir el método a utilizar

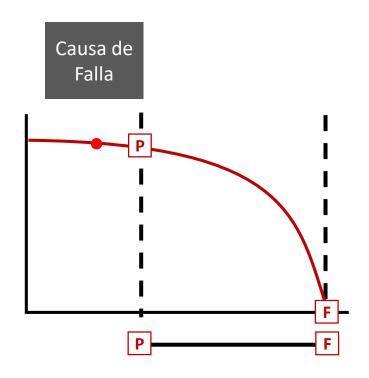
¿Rivalidad o EQUIPO?

Las tecnologías no deben competir, sino integrarse aprovechando las fortalezas y compensando las debilidades.

- Análisis de Vibraciones
- Ultrasonido
- Análisis de Lubricantes
- Termografía
- Ensayos No Destructivos



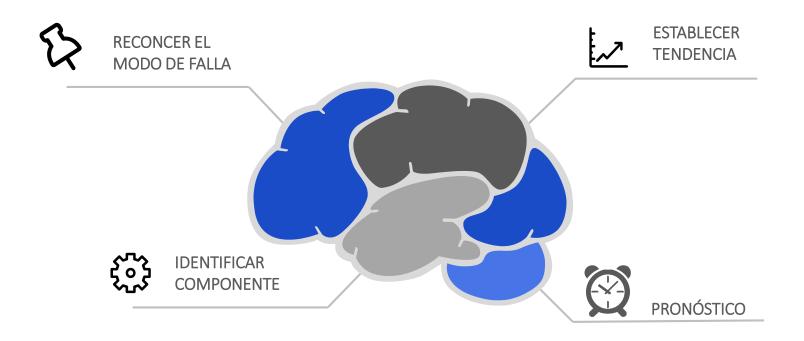
TRES enfoques para seleccionar la Técnica Correcta de Monitoreo de Condición



CONGRESO DE MANTENIMIENTO & CONFIABILIDAD EDICION CONFIABILIDAD CONFIABILIDAD

Frecuencia de Muestreo

- 1 PF > Frecuencia de muestreo
- PF = Frecuencia de muestreo
- 3 PF < Frecuencia de muestreo



Diagnóstico y pronóstico

Acciones de mantenimiento

Control de la causa

Regresar a la máquina a su condición normal

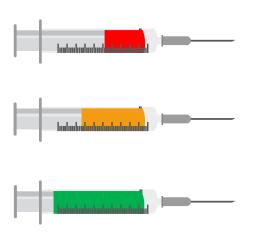
Acciones dirigidas a mitigar, controlar o eliminar la causa del problema Alinear, balancear, inspeccionar, corregir, ajustar, cambiar, etc.

Dar seguimiento

Verificar que las acciones se hagan y su efectividad. Establecer nueva muestra Registrar en FRACAS

Medir y documentar

Cuantificar costos, riesgos y beneficios

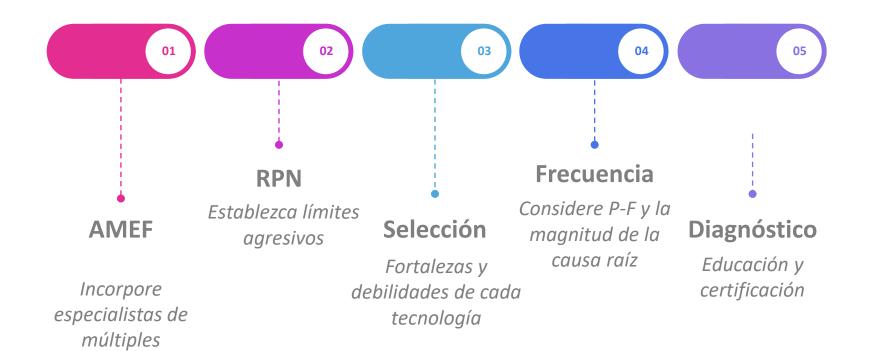


Retroalimentación de las acciones

CAPACIDAD Y EJECUCIÓN

Se hizo la acción – Problema continúa

La acción no se hizo


Se hizo la acción, Problema resuelto

Consejos

tecnologías

CONGRESSO DE MANTENIMIENTO & COnclusiones y beneficios

Un buen programa de monitoreo de condición identifica los problemas cuando son menores, para que no se vuelvan graves.

POR SU ATENCIÓN

iGRACIAS!

Ahora...; A implementar!

Gerardo Trujillo Corona gtrujillo@noria.mx

