# Creating a Competitive Advantage with Asset Management

Drew D. Troyer, CRE, MBA, CMRP

Certified Reliability Engineer

Executive Advisor and Coach - Engineered Asset

Management









# **Presentation Overview**

- Comparing the EAM winners and losers.
- EAM and your bottom line driving RONA
- EAM as a competitive advantage the Hayes
   & Wheelwright model.
- Using EAM as a competitive advantage to manage up and down business cycles.
- Uncovering the "hidden" plant.
- Achieving EAM culture change to make it stick.





# Operational Excellence Winners and Losers - Aberdeen Benchmarks

| Criteria                                                         | Leaders | Average | Laggards |
|------------------------------------------------------------------|---------|---------|----------|
| Frequently assess EAM risk to operational capability             | 41%     | 36%     | 17%      |
| Standard process for prioritizing maintenance work               | 65%     | 54%     | 43%      |
| Goals are aligned between maintenance and operations             | 57%     | 39%     | 30%      |
| Historical and real time data is used as actionable intelligence | 59%     | 52%     | 21%      |
| Failure data is employed to perform root cause analysis (RCA)    | 69%     | 50%     | 45%      |
| EAM technology is in place to manage asset performance           | 73%     | 62%     | 48%      |
| Asset performance can be compared across plants                  | 61%     | 36%     | 17%      |
| Overall Equipment Effectiveness (OEE)                            | 88%     | 81%     | 75%      |
| Forced downtime                                                  | 2%      | 11%     | 14%      |
| EAM cost/Sales                                                   | 17.2%   | 20.8%   | 23.5%    |
| ROA/Plan                                                         | +25%    | +7%     | -10%     |





# Plant Reliability in Dollars & \$ense

# Data from Aberdeen Group Research

**Asset Availability** 

Asset Yield Maintenance Cost as a Percent of Sales

Reactive Maintenance Scenario

> 81.80% 79.20% 23.50%

**Routine Preventive** Maintenance Scenario

> 87.20% 81.90% 20.80%

Managed Lean **Plant Reliability** Scenario

> 88.80% 84.20% 17.20%

\$163,136,697

\$48.941.009

\$114,195,688

251%

19.0%

#### "What if" Analysis...

Sales COGS (Assume 60%) Maintenance Cost Overheads **Total Costs** 

\$1,000,000,000 \$600,000,000 \$235,000,000 \$100,000,000 \$935,000,000 \$1.102.356.079 \$1,154,108,320 \$661,413,647 \$692,464,992 \$229,290,064 \$198,506,631 \$100,000,000 \$100,000,000 \$990,703,712 \$990,971,623

**EBIT** 

EBIT as Percent of Reactive Scenario Tax Burden (Assume 30% Profit) **Net Operating Profit After Taxes (NOPAT) Net Assets Employed** Return on Net Assets (RONA) Weighted Average Cost of Capital (10% Rate) Economic Value Added (EVA) **Shares Outstanding** 

P/E Ratio Share Price Market Capitalization

\$65,000,000 100% \$19,500,000 \$45,500,000 \$600,000,000 7.6% \$60,000,000 -\$14,500,000 25,000,000 12 \$31 \$780,000,000

\$111,652,367 172% \$33,495,710 \$78,156,657 \$600,000,000 13.0% \$60,000,000 \$18,156,657 25,000,000 12

\$600,000,000 \$60,000,000 \$54,195,688 25,000,000 \$54 \$1,339,828,406 \$1,957,640,365





# EAM Winners and Losers - BP vs. Chevron Since 2003



TC = Texas City Explosion

PB = Prudhoe Bay Leak

DH = Deepwater Horizon (Macondo) Disaster





## **EAM Excellence Also Drives Safety**



Doing more proactive work and less reactive work decreases injury risk. A planned job is a safe job.

Make the Reactive to Proactive transformation!





#### EAM Adaption of the Hayes & Wheelwright Operations

**Excellence Model** 

Increasing Strategic Impact

Strategic, Cross-**Functional EAM** 

**Proactive** Maintenance and Reliability

Preventive and Predictive Maintenance

Reactive Maintenance







#### How Lower Quartile Performers Deal With



#### Time

#### **Option 1 - Plant Expansion**

- Heavy front-end cost
- Long lag between decision and implementation
- Increases RAV and overhead
- Reduces RONA during industry down-cycle
- Doesn't require business process/cultural change.







# Hunt for Profit in Your Hidden Plant







# Marketing Induced Losses

Undersold production capacity- forced suboptimal product mix

Undersold Production Capacity- Shift loss

Undersold capacity-slow-down

Marketing Induced Losses Undersold production capacity - line shutdown

Imposed shortruns/ frequent changeover

Oversold production capability

#### **Generally Speaking:**

- Failure to design for flexibility and capability
- Unsold capacity
- Selling beyond the capabilities of the manufacturing processes





# Production Induced Losses

Supply chain disruption- material availability

Inefficient production scheduling- excessive changeovers

Supply chain disruption- forced suboptimal product mix

Poor changeover efficiency/
Effectiveness

Production Induced Losses Incorrect adjustment

Incorrect recipe/set-up

Wrong/poorly executed SOP

Supply chain disruption- material quality

#### **Generally Speaking:**

- Failure to design for flexibility, operability
- Poor control over standard operations
- ■Poor changeover control
- Poor supply chain dependability





## **Equipment Induced Losses**



#### **Generally Speaking:**

- Failure to design for reliability, maintainability and supportability
- ■Poor control over preventive maintenance
- Poor control over corrective maintenance
- Poor control over work management





#### How Upper Quartile Performers Deal With Business Cycles



Minimizes overhead-lean operation





# My Own Research About What Goes Wrong in the Plant







#### You Can't Just Buy Reliability...

You Must Reengineer - Supply Chain Management Example







## **EAM Functional Activities**







### Creating a New Business as Usual







# Conclusions

- There are measurable differences between upper and lower quartile equipment asset managers
- These differences translate into better P&L performance and a leaner balance sheet – both drive RONA
- When used as a competitive advantage, upper quartile performers can opportunistically manage down markets, while their competitors scramble and react.
- Leveraging equipment asset management as a competitive advantage requires a top to bottom organizational culture change.

# Thank You!

the drew.troyer@sigma-reliability.com
+1 918 691 1794
Find my Articles on LinkedIn



